設(shè)圓C:(x-3)2+(y-5)2=5,過(guò)圓心C作直線(xiàn)l交圓于A,B兩點(diǎn),與y軸交于點(diǎn)P,若A恰好為線(xiàn)段BP的中點(diǎn),則直線(xiàn)l的方程為   
【答案】分析:由題意可設(shè)直線(xiàn)L的方程為y-5=k(x-3),P(0,5-3k),設(shè)A(x1,y1),B(x2,y2),聯(lián)立,然后由方程的根與系數(shù)關(guān)系可得,x1+x2,x1x2,由A為PB的中點(diǎn)可得x2=2x1,聯(lián)立可求x1,x2,進(jìn)而可求k,即可求解直線(xiàn)方程
解答:解:由題意可得,C(3,5),直線(xiàn)L的斜率存在
可設(shè)直線(xiàn)L的方程為y-5=k(x-3)
令x=0可得y=5-3k即P(0,5-3k),設(shè)A(x1,y1),B(x2,y2
聯(lián)立消去y可得(1+k2)x2-6(1+k2)x+9k2+4=0
由方程的根與系數(shù)關(guān)系可得,x1+x2=6,x1x2=
∵A為PB的中點(diǎn)
即x2=2x1
把②代入①可得x2=4,x1=2,x1x2==8
∴k=±2
∴直線(xiàn)l的方程為y-5=±2(x-3)即y=2x-1或y=-2x+11
故答案為:y=2x-1或y=-2x+11
點(diǎn)評(píng):本題主要考查直線(xiàn)和圓的位置關(guān)系,方程的根與系數(shù)關(guān)系的應(yīng)用,體現(xiàn)了方程的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•湖南模擬)設(shè)圓C:(x-3)2+(y-5)2=5,過(guò)圓心C作直線(xiàn)l交圓于A,B兩點(diǎn),與y軸交于點(diǎn)P,若A恰好為線(xiàn)段BP的中點(diǎn),則直線(xiàn)l的方程為
y=2x-1或y=-2x+11
y=2x-1或y=-2x+11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)圓C:(x-3)2+y2=4經(jīng)過(guò)拋物線(xiàn)y2=2px(p>0)的焦點(diǎn),則拋物線(xiàn)的方程是
y2=20x或y2=4x
y2=20x或y2=4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省名校新高考研究聯(lián)盟高三(上)12月聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

設(shè)圓C:(x-3)2+(y-5)2=5,過(guò)圓心C作直線(xiàn)l交圓于A,B兩點(diǎn),與y軸交于點(diǎn)P,若A恰好為線(xiàn)段BP的中點(diǎn),則直線(xiàn)l的方程為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年海南省瓊海市高考數(shù)學(xué)模擬測(cè)試1(文科)(解析版) 題型:填空題

設(shè)圓C:(x-3)2+y2=4經(jīng)過(guò)拋物線(xiàn)y2=2px(p>0)的焦點(diǎn),則拋物線(xiàn)的方程是   

查看答案和解析>>

同步練習(xí)冊(cè)答案