【題目】為提升教師業(yè)務(wù)水平,引領(lǐng)青年教師專業(yè)成長(zhǎng),烏魯木齊市教育局舉行了全市青年教師課堂教學(xué)比賽,烏魯木齊市各中學(xué)青年教師積極報(bào)名、蹦躍參加.現(xiàn)甲、乙兩校各有3名教師報(bào)名參賽,其中甲校21女,乙校12.

1)若從甲校和乙校報(bào)名的教師中各任選1名,寫出所有可能的結(jié)果,并求選出的2名教師性別相同的概率;

2)若從報(bào)名的6名教師中任選2名,寫出所有可能的結(jié)果,并求選出的2名教師來(lái)自同一學(xué)校的概率.

【答案】1)可能結(jié)果見解析,;(2)可能結(jié)果見解析,

【解析】

(1)設(shè)甲校兩男教師分別用,表示,女教師用表示;乙校男教師用表示,兩女教師分別用,表示,用列舉法直接列舉從甲校和乙校報(bào)名的教師中各任選1名即可,再根據(jù)列舉額結(jié)果計(jì)算概率.
(2)設(shè)這6名教師為,,,,用列舉法直接列舉從報(bào)名的6名教師中任選2名即可,再根據(jù)列舉額結(jié)果計(jì)算概率.

1)甲校兩男教師分別用表示,女教師用表示;

乙校男教師用表示,兩女教師分別用,表示,

從甲校和乙校報(bào)名的教師中各任選1名的所有可能的結(jié)果為:,,,,,,9.

從中選出兩名教師性別相同的結(jié)果有:,,,4種,

選出的兩名教師性別相同的概率為.

2)從甲校和乙校報(bào)名的教師中任選2名的所有可能的結(jié)果為:

,,,,,,,,,15種,

從中選出兩名教師來(lái)自同一學(xué)校的結(jié)果有:

,,,,6.

選出的兩名教師來(lái)自同一學(xué)校的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是等邊三角形, 邊上的動(dòng)點(diǎn)(含端點(diǎn)),記,.

(1)求的最大值;

(2)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠加工的零件按箱出廠,每箱有10個(gè)零件,在出廠之前需要對(duì)每箱的零件作檢驗(yàn),人工檢驗(yàn)方法如下:先從每箱的零件中隨機(jī)抽取4個(gè)零件,若抽取的零件都是正品或都是次品,則停止檢驗(yàn);若抽取的零件至少有1個(gè)至多有3個(gè)次品,則對(duì)剩下的6個(gè)零件逐一檢驗(yàn).已知每個(gè)零件檢驗(yàn)合格的概率為0.8,每個(gè)零件是否檢驗(yàn)合格相互獨(dú)立,且每個(gè)零件的人工檢驗(yàn)費(fèi)為2.

1)設(shè)1箱零件人工檢驗(yàn)總費(fèi)用為元,求的分布列;

2)除了人工檢驗(yàn)方法外還有機(jī)器檢驗(yàn)方法,機(jī)器檢驗(yàn)需要對(duì)每箱的每個(gè)零件作檢驗(yàn),每個(gè)零件的檢驗(yàn)費(fèi)為1.6.現(xiàn)有1000箱零件需要檢驗(yàn),以檢驗(yàn)總費(fèi)用的數(shù)學(xué)期望為依據(jù),在人工檢驗(yàn)與機(jī)器檢驗(yàn)中,應(yīng)該選擇哪一個(gè)?說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解全市統(tǒng)考情況,從所有參加考試的考生中抽取4000名考生的成績(jī),頻率分布直方圖如下圖所示.

(1)求這4000名考生的半均成績(jī)(同一組中數(shù)據(jù)用該組區(qū)間中點(diǎn)作代表);

2)由直方圖可認(rèn)為考生考試成績(jī)z服從正態(tài)分布,其中分別取考生的平均成績(jī)和考生成績(jī)的方差,那么抽取的4000名考生成績(jī)超過84.81分(含84.81分)的人數(shù)估計(jì)有多少人?

3)如果用抽取的考生成績(jī)的情況來(lái)估計(jì)全市考生的成績(jī)情況,現(xiàn)從全市考生中隨機(jī)抽取4名考生,記成績(jī)不超過84.81分的考生人數(shù)為,求.(精確到0.001

附:

,則;

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)求曲線的直角坐標(biāo)方程及直線的普通方程;

2)設(shè)直線與曲線交于,兩點(diǎn)(點(diǎn)在點(diǎn)左邊)與直線交于點(diǎn).求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f (x)=(x-2)ex+a(x-1)2,討論f (x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】保險(xiǎn)公司對(duì)一個(gè)擁有20000人的企業(yè)推出一款意外險(xiǎn)產(chǎn)品,每年每位職工只要交少量保費(fèi),發(fā)生意外后可一次性獲得若干賠償金,保險(xiǎn)公司把企業(yè)的所有崗位共分為三類工種,從事這三類工種的人數(shù)分別為12000,60002000,由歷史數(shù)據(jù)統(tǒng)計(jì)出三類工種的賠付頻率如下表(并以此估計(jì)賠付概率):

已知三類工種職工每人每年需交的保費(fèi)分別為252540元,出險(xiǎn)后的賠償金額分別為100萬(wàn)元100萬(wàn)元50萬(wàn)元,保險(xiǎn)公司在開展此項(xiàng)業(yè)務(wù)過程中的固定支出為每年10萬(wàn)元.

1)設(shè)A類工種職工的每份保單保險(xiǎn)公司的收益為隨機(jī)變量X(元),求X的數(shù)學(xué)期望;

2)若該公司全員參加保險(xiǎn),求保險(xiǎn)公司該業(yè)務(wù)所獲利潤(rùn)的期望值;

3)現(xiàn)有如下兩個(gè)方案供企業(yè)選擇:

方案1:企業(yè)不與保險(xiǎn)公司合作,職工不交保險(xiǎn),若出意外,企業(yè)自行拿出與保險(xiǎn)公司提供的等額賠償金賠付給出意外職工,且企業(yè)開展這項(xiàng)工作每年還需另外固定支出12萬(wàn)元;

方案2:企業(yè)與保險(xiǎn)公司合作,企業(yè)負(fù)責(zé)職工保費(fèi)的70%,職工個(gè)人負(fù)責(zé)保費(fèi)的30%,出險(xiǎn)后賠償金由保險(xiǎn)公司賠付,企業(yè)無(wú)額外專項(xiàng)開支.

請(qǐng)根據(jù)企業(yè)成本差異給出選擇合適方案的建議.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)拋物線的焦點(diǎn)為,直線與拋物線交于兩點(diǎn).

1)若過點(diǎn),且,求的斜率;

2)若,且的斜率為,當(dāng)時(shí),求軸上的截距的取值范圍(用表示),并證明的平分線始終與軸平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù),求的極值;

(2)證明:.

(參考數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊(cè)答案