中,角的對邊長分別為,的面積為,且
(1)求角
(2)求值:

(1);(2)-1.

解析試題分析:(1)        6分
(2)原式=
           14分
考點(diǎn):三角形的面積公式;余弦定理;三角函數(shù)式求值;和差公式。
點(diǎn)評:條件中出現(xiàn)平方關(guān)系多考慮余弦定理,出現(xiàn)一次式,一般要考慮正弦定理,屬于基礎(chǔ)題型。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分) 在中, 
(Ⅰ)若三邊長構(gòu)成公差為4的等差數(shù)列,求的面積
(Ⅱ)已知的中線,若,求的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,內(nèi)角對邊的邊長分別是,已知,
(1)若的面積等于,求;
(2)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,
(1)求角的大;
(2)若,,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分) 本題共有2個小題,第1小題滿分6分,第2小題滿分8分.
(文)某種型號汽車的四個輪胎半徑相同,均為,該車的底盤與輪胎中心在同一水平面上. 該車的涉水安全要求是:水面不能超過它的底盤高度. 如圖所示:某處有一“坑形”地面,其中坑形成頂角為的等腰三角形,且,如果地面上有()高的積水(此時坑內(nèi)全是水,其它因素忽略不計(jì)).
(1)當(dāng)輪胎與、同時接觸時,求證:此輪胎露在水面外的高度(從輪胎最上部到水面的距離)為
(2) 假定該汽車能順利通過這個坑(指汽車在過此坑時,符合涉水安全要求),求的最大值.
(精確到1cm).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分) 設(shè)△的內(nèi)角所對的邊分別為,已知
(1)求△的面積;
(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了豎一塊廣告牌,要制造三角型支架,三角形支架如圖所示,要求,長度大于米,且米,為了廣告牌的穩(wěn)固,要求的長度越短越好,求最短為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,角所對的邊分別為,設(shè)的面積,滿足.
(Ⅰ)求角的大;
(Ⅱ)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分13分)我炮兵陣地位于地面A處,兩觀察所分別位于地面點(diǎn)C和D處,已知CD=6,∠ACD=45°,∠ADC=75°, 目標(biāo)出現(xiàn)于地面點(diǎn)B處時,測得∠BCD=30°,∠BDC=15°(如圖),求炮兵陣地到目標(biāo)的距離.

查看答案和解析>>

同步練習(xí)冊答案