已知橢圓的兩個焦點F1(0,1)、F2(0,1)、直線y=4是它的一條準(zhǔn)線,A1、A2分別是橢圓的上、下兩個頂點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)以原點為頂點,A1點的拋物線為C,若過點F1的直線l與C交于不同的兩點M、N,求線段MN的中點Q的軌跡方程.
(Ⅰ)設(shè)橢圓方程為
y2
a2
+
x2
b2
=1,a>b>0
,
由題意,得c=1,
a2
c
=4

∴a2=4,b2=4-1=3,
∴所求橢圓方程
x2
4
+
x2
3
=1
;  …(5分)
(Ⅱ)設(shè)拋物線C的方程為x2=2py,p>0.
p
2
=2
,得p=4.
∴拋物線C的方程為x2=8y,
設(shè)線段MN的中點Q(x,y),直線l的方程為y=kx+1,
y=kx+1
x2=8y
,得x2=8kx+8,
即x2-8kx-8=0,設(shè)M(x1,y1),N(x2,y2),
則有x1+x2=8k,x1x2=-8.
x=
x1+x2
2
=
8k
2
=4k
,
代入直線l的方程,得y=k•4k+1=4k2+1,
x=4k
y=4k2+1
,消去k,得y=
x2
4
+1

即x2=4(y-1),
∴點Q的軌跡方程是x2=4(y-1).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的“特征三角形”.如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓C1
x2
4
+y2=1

(1)若橢圓C2
x2
16
+
y2
4
=1
,判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請說明理由;
(2)寫出與橢圓C1相似且短半軸長為b的橢圓Cb的方程;若在橢圓Cb上存在兩點M、N關(guān)于直線y=x+1對稱,求實數(shù)b的取值范圍?
(3)如圖:直線y=x與兩個“相似橢圓”M:
x2
a2
+
y2
b2
=1
Mλ
x2
a2
+
y2
b2
=λ2(a>b>0,0<λ<1)
分別交于點A,B和點C,D,試在橢圓M和橢圓Mλ上分別作出點E和點F(非橢圓頂點),使△CDF和△ABE組成以λ為相似比的兩個相似三角形,寫出具體作法.(不必證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省臺州中學(xué)高三(上)第二次統(tǒng)練數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知點F1,F(xiàn)2為橢圓的兩個焦點,點O為坐標(biāo)原點,圓O是以F1,F(xiàn)2為直徑的圓,一條直線與圓O相切并與橢圓交于不同的兩點A,B.
(1)設(shè)b=f(k),求f(k)的表達(dá)式;
(2)若,求直線l的方程;
(3)若,求三角形OAB面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省臺州中學(xué)(上)第二次統(tǒng)練數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知點F1,F(xiàn)2為橢圓的兩個焦點,點O為坐標(biāo)原點,圓O是以F1,F(xiàn)2為直徑的圓,一條直線與圓O相切并與橢圓交于不同的兩點A,B.
(1)設(shè)b=f(k),求f(k)的表達(dá)式;
(2)若,求直線l的方程;
(3)若,求三角形OAB面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年上海市浦東新區(qū)高三(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的“特征三角形”.如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓
(1)若橢圓,判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請說明理由;
(2)寫出與橢圓C1相似且短半軸長為b的橢圓Cb的方程;若在橢圓Cb上存在兩點M、N關(guān)于直線y=x+1對稱,求實數(shù)b的取值范圍?
(3)如圖:直線y=x與兩個“相似橢圓”分別交于點A,B和點C,D,試在橢圓M和橢圓Mλ上分別作出點E和點F(非橢圓頂點),使△CDF和△ABE組成以λ為相似比的兩個相似三角形,寫出具體作法.(不必證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市徐匯區(qū)、金山區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的“特征三角形”.如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓
(1)若橢圓,判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請說明理由;
(2)寫出與橢圓C1相似且短半軸長為b的橢圓Cb的方程;若在橢圓Cb上存在兩點M、N關(guān)于直線y=x+1對稱,求實數(shù)b的取值范圍?
(3)如圖:直線y=x與兩個“相似橢圓”分別交于點A,B和點C,D,試在橢圓M和橢圓Mλ上分別作出點E和點F(非橢圓頂點),使△CDF和△ABE組成以λ為相似比的兩個相似三角形,寫出具體作法.(不必證明)

查看答案和解析>>

同步練習(xí)冊答案