(2009•臺(tái)州二模)如圖,已知A、B、C是一條直路上的三點(diǎn),一個(gè)人從A出發(fā)行走到B處時(shí),望見塔M(將塔M視為與A、B、C在同一水平面上一點(diǎn))在正東方向且A在東偏南α方向,繼續(xù)行走1km在到達(dá)C處時(shí),望見塔M在東偏南β方向,則塔M到直路ABC的最短距離為( 。
分析:過M作MN⊥AB,交AB于點(diǎn)N,根據(jù)題意得:∠BMC=β,∠ABM=α,利用外角性質(zhì)得到∠C=α-β,在三角形BCM中,利用正弦定理表示出BM,在直角三角形BMN中,利用銳角三角函數(shù)定義表示出MN,即為塔M到直路ABC的最短距離.
解答:解:過M作MN⊥AB,交AB于點(diǎn)N,
根據(jù)題意得:∠BMC=β,∠ABM=α,
∴∠C=α-β,
在△BCM中,由正弦定理得:
1
sinβ
=
BM
sin(α-β)
,
∴BM=
sin(α-β)
sinβ
km,
在Rt△BMN中,MN=BMsinα=
sinαsin(α-β)
sinβ
km.
故選B
點(diǎn)評(píng):此題考查了正弦定理,以及銳角三角函數(shù)定義,熟練掌握正弦定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•臺(tái)州二模)已知兩條不同的直線m,l與三個(gè)不同的平面α,β,γ,滿足l=β∩γ,l∥α,m?α,m⊥γ,那么必有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•臺(tái)州二模)下圖是幾何體ABC-A1B1C1的三視圖和直觀圖.M是CC1上的動(dòng)點(diǎn),N,E分別是AM,A1B1的中點(diǎn).
(1)求證:NE∥平面BB1C1C;
(2)當(dāng)M在CC1的什么位置時(shí),B1M與平面AA1C1C所成的角是30°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•臺(tái)州二模)一袋子中有大小、質(zhì)量均相同的10個(gè)小球,其中標(biāo)記“開”字的小球有5個(gè),標(biāo)記“心”字的小球有3個(gè),標(biāo)記“樂”字的小球有2個(gè).從中任意摸出1個(gè)球確定標(biāo)記后放回袋中,再從中任取1個(gè)球.不斷重復(fù)以上操作,最多取3次,并規(guī)定若取出“樂”字球,則停止摸球.
求:(Ⅰ)恰好摸到2個(gè)“心”字球的概率;
(Ⅱ)摸球次數(shù)X的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•臺(tái)州二模)將三個(gè)分別標(biāo)有A,B,C的小球隨機(jī)地放入編號(hào)分別為1,2,3,4的四個(gè)盒子中,則第1號(hào)盒子內(nèi)有球的不同放法的總數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•臺(tái)州二模)已知向量
a
,
b
c
滿足|
a
|=1
,|
a
-
b
|=|
b
|
(
a
-
c
)
(
b
-
c
)=0
.若對(duì)每一確定的
b
,|
c
|
的最大值和最小值分別為m,n,則對(duì)任意
b
,m-n的最小值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案