分析 (1)求出函數(shù)的導(dǎo)數(shù),計算f′($\frac{1}{2}$)的值,從而求出切線方程即可;
(2)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間,從而判斷函數(shù)的極大值點(diǎn),求出a的值即可.
解答 解:(1)當(dāng)a=1時,f(x)=x-lnx,$f'(x)=1-\frac{1}{x}$,
所以曲線y=f(x)在點(diǎn)$(\frac{1}{2},\frac{1}{2}+ln2)$處的切線的斜率為$f'(\frac{1}{2})=1-\frac{1}{{\frac{1}{2}}}=-1$.
所求切線方程為$y-(\frac{1}{2}+ln2)=-(x-\frac{1}{2})$,即x+y-ln2-1=0.
(2)$f'(x)=\frac{{a{x^2}-ax+a-1}}{x^2}=\frac{(x-1)[x-(a-1)]}{x^2}(x>0)$,令f'(x)=0得x1=1,x2=a-1,由已知a-1>0,
①當(dāng)a-1<1即1<a<2時,f'(x),f(x)隨x的變化情況如下表:
x | (0,a-1) | a-1 | (a-1,1) | 1 | (1,+∞) |
f'(x) | + | 0 | - | 0 | + |
f(x) | 遞增 | 極大值 | 遞減 | 極小值 | 遞增 |
x | (0,1) | 1 | (1,+∞) |
f'(x) | + | 0 | + |
f(x) | 遞增 | 非極值 | 遞增 |
x | (0,1) | 1 | (1,a-1) | a-1 | (a-1,+∞) |
f'(x) | + | 0 | - | 0 | + |
f(x) | 遞增 | 極大值 | 遞減 | 極小值 | 遞增 |
點(diǎn)評 本題考查了切線方程問題,考查函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 如果α⊥β,那么α內(nèi)一定存在直線平行于β | |
B. | 如果α⊥γ,β⊥γ,α∩β=l,那么l⊥γ | |
C. | 如果α不垂直于β,那么α內(nèi)一定不存在直線垂直于β | |
D. | 如果α⊥β,那么α內(nèi)所有直線都垂直于β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{π}{2}$ | B. | $\frac{π}{2}$ | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $-\frac{4}{5}$ | C. | $-\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{EB}$ | B. | $\overrightarrow{BE}$ | C. | $\overrightarrow{AD}$ | D. | $\overrightarrow{CF}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{x^2}$ | B. | $-\frac{1}{x^2}$ | C. | $\frac{1}{2x}$ | D. | $-\frac{1}{2x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com