2.函數(shù)f(x)=$\frac{1}{2}{x^2}$-(a+1)x+1+lnx(a>0),若存在唯一一個(gè)整數(shù)x0使f(x0)<0成立,則a的范圍是(  )
A.(0,1)B.(0,1]C.(0,2+2ln2)D.($\frac{1}{2}$,$\frac{1}{2}$+$\frac{1}{2}$ln2)

分析 設(shè)g(x)=$\frac{1}{2}{x^2}$-(a+1)x+1,h(x)=-lnx,問題轉(zhuǎn)化為存在唯一的整數(shù)x0使得g(x0)在曲線y=h(x)的下方,根據(jù)二次函數(shù)的性質(zhì),數(shù)形結(jié)合可得g(1)<h(1)=0且h(2)>g(2),解關(guān)于a的不等式,取交集即可.

解答 解:設(shè)g(x)=$\frac{1}{2}{x^2}$-(a+1)x+1,h(x)=-lnx,
由題意知存在唯一的整數(shù)x0使得g(x0)在曲線y=h(x)=-lnx的下方,
畫出函數(shù)的圖象,如圖示:
,
由題意結(jié)合圖象可知,存在唯一的整數(shù)x0=1,f(x0)<0,
而h(1)=-ln1=0,g(1)=$\frac{1}{2}$-a<0,解得:a>$\frac{1}{2}$,
h(2)=-ln2,g(2)=2-2a-1>-ln2,解得:a<$\frac{1}{2}$+$\frac{1}{2}$ln2,
故a∈($\frac{1}{2}$,$\frac{1}{2}$+$\frac{1}{2}$ln2),
故選:D.

點(diǎn)評(píng) 本題考查二次函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性,涉及數(shù)形結(jié)合和轉(zhuǎn)化的思想,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.sin523°sin943°+sin1333°sin313°=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知集合A的元素是由方程(a2-1)x2+2(a+1)x+1=0的實(shí)數(shù)解構(gòu)成.
(1)若A為空集,求a的取值范圍;
(2)若A是單元素集,求a的值;
(3)若A中至多只有一個(gè)元素,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C焦點(diǎn)在x軸上,中心在原點(diǎn),長軸長為4,離心率$\frac{\sqrt{3}}{2}$,F(xiàn)1、F2分別是橢圓的左、右焦點(diǎn).
(1)若P是第一象限內(nèi)橢圓C上的一點(diǎn),$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=-$\frac{5}{4}$,求點(diǎn)P的坐標(biāo);
(2)設(shè)過定點(diǎn)M(0,2)的直線l與橢圓交于不同的兩點(diǎn)A、B,且∠AOB為銳角(其中O為作標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)a為實(shí)數(shù),函數(shù)f(x)=x2e1-x-a(x-1).
(1)當(dāng)a=0時(shí),求f(x)在$(\frac{3}{4},3)$上的最大值;
(2)設(shè)函數(shù)g(x)=f(x)+a(x-1-e1-x),當(dāng)g(x)有兩個(gè)極值點(diǎn)x1,x2(x1<x2)時(shí),總有x2g(x1)≤λf′(x1),求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在平面直角坐標(biāo)系xOy中,已知橢圓C的中心在原點(diǎn)O,兩焦點(diǎn)F1、F2在x軸上,上頂點(diǎn)B與F1、F2圍成一個(gè)正三角,且橢圓C經(jīng)過點(diǎn)(1,$\frac{3}{2}$).
(1)求橢圓C的離心率e和標(biāo)準(zhǔn)方程;
(2)過右焦點(diǎn)F2的直線l將△BF1F2平分成面積相等的兩部分,求直線l被橢圓C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.直線x-4y+1=0經(jīng)過拋物線y=ax2的焦點(diǎn),且此拋物線上存在一點(diǎn)P,使PA⊥PB,其中,A(0,2+m),B(0,2-m),則正數(shù)m的最小值為( 。
A.$\sqrt{7}$B.$\sqrt{5}$C.$\frac{\sqrt{5}}{2}$D.$\frac{\sqrt{7}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)y=f(x)=2x3-3x.
(1)求y=f(x)在x=1處的切線方程;
(2)求y=f(x)在區(qū)間[-2,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓D與y軸交于上A、下B兩點(diǎn),橢圓的兩個(gè)焦點(diǎn)F1(0,1)、F2(0,-1),直線y=4是橢圓的一條準(zhǔn)線.
(Ⅰ)求橢圓D的方程;
(Ⅱ)設(shè)以原點(diǎn)為頂點(diǎn),A為焦點(diǎn)的拋物線為C,若過點(diǎn)F1的直線與C相交于不同M、N的兩點(diǎn),求線段MN的中點(diǎn)Q的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案