【題目】如圖,四棱錐中,底面,,,,,,為棱的中點(diǎn).
(1)求證:平面;
(2)求點(diǎn)到平面的距離,
【答案】(1)見(jiàn)證明;(2)
【解析】
(1)取的中點(diǎn),則,通過(guò)勾股證得即得結(jié)合即可得證.
(2)先求再求根據(jù)體積公式計(jì)算即可.
解:(1)取的中點(diǎn),連結(jié),.如圖:
因?yàn)?/span>底面所以,
又因?yàn)?/span>且,
所以平面,得.
又因?yàn)?/span>面且所以面,
在SAD中,
在SAB中,為的中點(diǎn),故,
在中,所以,
在中,,故,在中,,故,在中, ,由余弦定理知,
在中,,,滿足勾股定理所以,從而.
所以平面.
(2)連接BD并取中點(diǎn)O,連接EO,OC,過(guò)O作交CD于M點(diǎn),過(guò)O作交AD于N點(diǎn),如圖:
在中,,,
底面且為棱的中點(diǎn)
底面即為直角三角形即
在中,,由余弦定理知即
.
,且,
,解得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),的最大值為.
(1)求的值;
(2)試推斷方程是否有實(shí)數(shù)解?若有實(shí)數(shù)解,請(qǐng)求出它的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】科赫曲線是一種外形像雪花的幾何曲線,一段科赫曲線可以通過(guò)下列操作步驟構(gòu)造得到,任畫(huà)一條線段,然后把它均分成三等分,以中間一段為邊向外作正三角形,并把中間一段去掉,這樣,原來(lái)的一條線段就變成了4條小線段構(gòu)成的折線,稱為“一次構(gòu)造”;用同樣的方法把每條小線段重復(fù)上述步驟,得到16條更小的線段構(gòu)成的折線,稱為“二次構(gòu)造”,…,如此進(jìn)行“次構(gòu)造”,就可以得到一條科赫曲線.若要在構(gòu)造過(guò)程中使得到的折線的長(zhǎng)度達(dá)到初始線段的1000倍,則至少需要通過(guò)構(gòu)造的次數(shù)是( ).(取,)
A.16B.17C.24D.25
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐,,,在底面上的投影在上.
(1)證明.
(2)為棱上一點(diǎn),若與面所成的角和與面所成的角相等,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著城市地鐵建設(shè)的持續(xù)推進(jìn),市民的出行也越來(lái)越便利.根據(jù)大數(shù)據(jù)統(tǒng)計(jì),某條地鐵線路運(yùn)行時(shí),發(fā)車時(shí)間間隔t(單位:分鐘)滿足:4≤t≤15,N,平均每趟地鐵的載客人數(shù)p(t)(單位:人)與發(fā)車時(shí)間間隔t近似地滿足下列函數(shù)關(guān)系:,其中.
(1)若平均每趟地鐵的載客人數(shù)不超過(guò)1500人,試求發(fā)車時(shí)間間隔t的值.
(2)若平均每趟地鐵每分鐘的凈收益為(單位:元),問(wèn)當(dāng)發(fā)車時(shí)間間隔t為多少時(shí),平均每趟地鐵每分鐘的凈收益最大?井求出最大凈收益.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年是新中國(guó)成立七十周年,新中國(guó)成立以來(lái),我國(guó)文化事業(yè)得到了充分發(fā)展,尤其是黨的十八大以來(lái),文化事業(yè)發(fā)展更加迅速,下圖是從2013 年到 2018 年六年間我國(guó)公共圖書(shū)館業(yè)機(jī)構(gòu)數(shù)(個(gè))與對(duì)應(yīng)年份編號(hào)的散點(diǎn)圖(為便于計(jì)算,將 2013 年編號(hào)為 1,2014 年編號(hào)為 2,…,2018年編號(hào)為 6,把每年的公共圖書(shū)館業(yè)機(jī)構(gòu)個(gè)數(shù)作為因變量,把年份編號(hào)從 1 到 6 作為自變量進(jìn)行回歸分析),得到回歸直線,其相關(guān)指數(shù),給出下列結(jié)論,其中正確的個(gè)數(shù)是( )
①公共圖書(shū)館業(yè)機(jī)構(gòu)數(shù)與年份的正相關(guān)性較強(qiáng)
②公共圖書(shū)館業(yè)機(jī)構(gòu)數(shù)平均每年增加13.743個(gè)
③可預(yù)測(cè) 2019 年公共圖書(shū)館業(yè)機(jī)構(gòu)數(shù)約為3192個(gè)
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平行四邊形中,,平面平面,三角形為等邊三角形,.
(Ⅰ)求證:平面平面;
(Ⅱ)若平面
①求異面直線與所成角的余弦值;
②求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在中, , 分別為, 的中點(diǎn),為的中點(diǎn),,.將沿折起到的位置,使得平面平面,如圖2.
(1)求證:;
(2)求直線和平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線:(,為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線:.
(1)說(shuō)明是哪一種曲線,并將的方程化為極坐標(biāo)方程;
(2)若直線的方程為,設(shè)與的交點(diǎn)為,,與的交點(diǎn)為,,若的面積為,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com