已知向量
a
=(-2,2,0),
b
=(-2,0,2),求向量
n
,使
n
a
n
b
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專(zhuān)題:平面向量及應(yīng)用
分析:利用向量垂直,數(shù)量積為0,得到關(guān)于
n
坐標(biāo)的方程組解之.
解答: 解:設(shè)
n
=(x,y,z),因?yàn)?span id="vj6xmys" class="MathJye">
n
a
n
b

所以
-2x+2y=0
-2x+2z=0
,
所以x=y=z,
所以
n
=(x,x,x),x∈R.
點(diǎn)評(píng):本題考查了向量垂直的性質(zhì);兩個(gè)向量垂直,它們的數(shù)量積為0.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
9-x2
,-3≤x≤3
x2
3
-3,x<-3或x>3
的圖象為C,直線l:kx+y+5k=0,則直線l與圖象C的公共點(diǎn)最多時(shí)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)的定義域?yàn)閇0,1],則函數(shù)y=f(x2)及f(2x)+f(x+
2
3
)的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)在R上滿足f(1+x)=2f(1-x)-x2+3x+1,則曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程是( 。
A、3x-y-2=0
B、3x+y-2=0
C、x-y+1=0
D、x-y-2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-x3+ax2+b(a、b∈R).
(1)要使f(x)在區(qū)間(0,1)上單調(diào)遞增,試求a的取值范圍;
(2)當(dāng)a>0時(shí),試求f(x)的解析式,使f(x)的極大值為
31
27
,極小值為1;
(3)若x∈[0,1]時(shí),f(x)圖象上任意一點(diǎn)處的切線的傾斜角為θ,試求當(dāng)θ∈[0,
π
4
]時(shí),a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)命題p:若y=f(x)為單調(diào)增函數(shù),則y=f(ax)(a>0,a≠1)也是單調(diào)增函數(shù).命題q:存在實(shí)數(shù)a,使關(guān)于x的方程x2+2x+loga
3
2
=0的解集是空集,當(dāng)p或q有且只有一個(gè)正確時(shí),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知偶函數(shù)f(x)滿足條件:當(dāng)x∈R時(shí),恒有f(x+2)=f(x),且0≤x≤1時(shí),有 f(x)單調(diào)遞增,則f(
98
19
),f(
101
17
),f(
106
15
)的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
a
=(1,2),
b
=(-2,3),若向量m
a
+
b
與向量
c
=(-3,2)共線,則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A={x|-3≤x≤a,a>-3},B={y|y=3x+10,x∈A},C={z|z=5-x,x∈A},且B∩C=C,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案