如圖,已知棱柱的底面是菱形,且,,為棱的中點(diǎn),為線段的中點(diǎn),

(Ⅰ)求證: ;
(Ⅱ)判斷直線與平面的位置關(guān)系,并證明你的結(jié)論;
(Ⅲ)求三棱錐的體積.
(Ⅰ)證明:連結(jié)、交于點(diǎn),再連結(jié),
可得,四邊形是平行四邊形,由,平面.
(Ⅱ)平面 
(Ⅲ).

試題分析:(Ⅰ)證明:連結(jié)、交于點(diǎn),再連結(jié),
 
,且, 又,故,
 四邊形是平行四邊形,故,平面         4分
(Ⅱ)平面,下面加以證明:
在底面菱形,
平面,
,平面
,平面         8分
(Ⅲ)過點(diǎn),垂足平面,平面
,平面
中,,故
         12分
點(diǎn)評(píng):典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計(jì)算。在計(jì)算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計(jì)算”的步驟,利用空間向量,省去繁瑣的證明,也是解決立體幾何問題的一個(gè)基本思路。注意運(yùn)用轉(zhuǎn)化與化歸思想,將空間問題轉(zhuǎn)化成平面問題。本題含“探究性問題”,這一借助于幾何體中的垂直關(guān)系。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知四邊形為梯形,, ,四邊形為矩形,且平面平面,點(diǎn)的中點(diǎn).

(Ⅰ)求證:平面;
(Ⅱ)求證:平面平面;
(Ⅲ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,

(I)求證
(II)設(shè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,則線段的中點(diǎn)的坐標(biāo)為         (  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在如圖所示的幾何體中,面為正方形,面為等腰梯形,,,,.

(1)求證:;
(2)求三棱錐的體積;
(3)線段上是否存在點(diǎn),使//平面?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下圖是由哪個(gè)平面圖形旋轉(zhuǎn)得到的(   )

A.           B.         C.          D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,是半圓的直徑,是半圓上除、外的一個(gè)動(dòng)點(diǎn),平面,,,,

⑴證明:平面平面
⑵試探究當(dāng)在什么位置時(shí)三棱錐的體積取得最大值,請(qǐng)說明理由并求出這個(gè)最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

將正方形ABCD沿對(duì)角線BD折成直二面角,有如下四個(gè)結(jié)論:
①AC⊥BD;②是等邊三角形;③所成的角為;④與平面的角。
其中正確的結(jié)論的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知AO為平面的一條斜線,O為斜足,OB為OA在平面內(nèi)的射影,直線OC在平面內(nèi),且,則的大小為(  。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案