15.以下四個(gè)命題,正確的是( 。
①?gòu)膭蛩賯鬟f的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),這樣的抽樣是分層抽樣;
②兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于1;
③在回歸直線方程$\widehat{y}$=0.2x+12中,當(dāng)變量x每增加一個(gè)單位時(shí),變量y一定增加0.2單位;
④對(duì)于兩分類變量X與Y,求出其統(tǒng)計(jì)量K2,K2越小,我們認(rèn)為“X與Y有關(guān)系”的把握程度越。
A.①④B.②③C.①③D.②④

分析 ①抽樣是間隔相同,故①應(yīng)是系統(tǒng)抽樣;
②根據(jù)相關(guān)系數(shù)的公式可判斷;
③由回歸方程的定義可判斷;
④k越小,“X與Y有關(guān)系”的把握程度越。

解答 解:根據(jù)抽樣是間隔相同,且樣本間無(wú)明顯差異,故①應(yīng)是系統(tǒng)抽樣,即①為假命題;
兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于1;兩個(gè)隨機(jī)變量相關(guān)性越弱,則相關(guān)系數(shù)的絕對(duì)值越接近于0;故②為真命題;
在回歸直線方程$\widehat{y}$=0.2x+12中,當(dāng)變量x每增加一個(gè)單位時(shí),預(yù)報(bào)變量平均增加0.2個(gè)單位,故③為假命題相,
若分類變量X與Y的隨機(jī)變量K2的觀測(cè)值k越小,則兩個(gè)分類變量有關(guān)系的把握性越小,故④為真命題.
∴正確的是②④,
故選:D.

點(diǎn)評(píng) 本題主要考查了系統(tǒng)抽樣的概念和相關(guān)系數(shù),回歸方程定義的考查,屬于基礎(chǔ)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.某空間幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.$\frac{7}{3}$B.$\frac{8-π}{3}$C.$\frac{8}{3}$D.$\frac{7-π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.執(zhí)行如圖程序:

輸出的結(jié)果S是880.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)=Asin(2x+φ)+k(A>0,k>0)的最大值為4,最小值為2,且f(x0)=2,則f(x0+$\frac{π}{4}$)=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)函數(shù)f(x)=a-x-kax(a>0且a≠1)在(-∞,+∞)上既是奇函數(shù)又是減函數(shù),則g(x)=loga(x+k)的圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x+y-2≤0\\ x-y+2≥0\\ y≥0\end{array}\right.$,則z=3x+2y的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖,棱長(zhǎng)為2的正方體ABCD-A1B1C1D1,E為棱AD的中點(diǎn),則經(jīng)過(guò)點(diǎn)B1、D1和E三點(diǎn)的截面的左視圖的面積為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)a,b為實(shí)數(shù),則“ab>1”是“b>$\frac{1}{a}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列函數(shù)中,既是奇函數(shù),又在(0,1)上單調(diào)遞增的為( 。
A.y=x3+1B.y=ln|x|C.y=x+$\frac{1}{x}$D.y=x+sinx

查看答案和解析>>

同步練習(xí)冊(cè)答案