若數(shù)集A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},則能使A⊆B成立的所有a的集合是( 。
分析:利用A⊆B,建立不等關(guān)系即可求解,注意當(dāng)A=∅時(shí),也成立.
解答:解:若A=∅,即2a+1>3a-5,解得a<6時(shí),滿足A⊆B.
若A≠∅,即a≥6時(shí),要使A⊆B成立,
2a+1≥3
3a-5≤22
,即
a≥1
a≤9
,解得1≤a≤9,此時(shí)6≤a≤9.
綜上a≤9.
故選C.
點(diǎn)評(píng):本題主要考查利用集合關(guān)系求參數(shù)取值問(wèn)題,注意對(duì)集合A為空集時(shí)也成立,注意端點(diǎn)取值等號(hào)的取舍問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
|x|,x∈p
-x2+2x,x∈M
其中P,M是非空數(shù)集,且P∩M=φ,設(shè)f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}.
(I)若P=(-∞,0),M=[0,4],求f(P)∪f(wàn)(M);
(II)是否存在實(shí)數(shù)a>-3,使得P∪M=[-3,a],且f(P)∪f(wàn)(M)=[-3,2a-3]?若存在,請(qǐng)求出滿足條件的實(shí)數(shù)a;若不存在,請(qǐng)說(shuō)明理由;
(III)若P∪M=R,且0∈M,I∈P,f(x)是單調(diào)遞增函數(shù),求集合P,M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=數(shù)學(xué)公式其中P,M是非空數(shù)集,且P∩M=φ,設(shè)f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}.
(I)若P=(-∞,0),M=[0,4],求f(P)∪f(wàn)(M);
(II)是否存在實(shí)數(shù)a>-3,使得P∪M=[-3,a],且f(P)∪f(wàn)(M)=[-3,2a-3]?若存在,請(qǐng)求出滿足條件的實(shí)數(shù)a;若不存在,請(qǐng)說(shuō)明理由;
(III)若P∪M=R,且0∈M,I∈P,f(x)是單調(diào)遞增函數(shù),求集合P,M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=
|x|,x∈p
-x2+2x,x∈M
其中P,M是非空數(shù)集,且P∩M=φ,設(shè)f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}.
(I)若P=(-∞,0),M=[0,4],求f(P)∪f(wàn)(M);
(II)是否存在實(shí)數(shù)a>-3,使得P∪M=[-3,a],且f(P)∪f(wàn)(M)=[-3,2a-3]?若存在,請(qǐng)求出滿足條件的實(shí)數(shù)a;若不存在,請(qǐng)說(shuō)明理由;
(III)若P∪M=R,且0∈M,I∈P,f(x)是單調(diào)遞增函數(shù),求集合P,M.

查看答案和解析>>

同步練習(xí)冊(cè)答案