【題目】某校高一(1)班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如下圖.
(1)求分?jǐn)?shù)在的頻率及全班人數(shù);
(2)求分?jǐn)?shù)在之間的頻數(shù),并計算頻率分布直方圖中間矩形的高;
(3)若要從分?jǐn)?shù)在之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,至少有一份分?jǐn)?shù)在之間的概率.
【答案】(1)頻率為,全班人數(shù)為;(2)頻數(shù)為,矩形的高為;(3).
【解析】
試題分析:(1)分?jǐn)?shù)在的頻率為第一組矩形的面積,全班人數(shù)為該組的頻數(shù)與頻率的比值;(2)用全班人數(shù)送去其余組的人數(shù)為之間的頻數(shù),用該組的頻率與組距的組距的比值為矩形的高;(3)首先用列舉法列舉出所有的基本事件,然后找出符合題意的基本事件個數(shù),從而利用古典概型概率公式計算即可.
試題解析:(1)分?jǐn)?shù)在的頻率為,
由莖葉圖知:分?jǐn)?shù)在之間的頻數(shù)為2,所以全班人數(shù)為.
(2)分?jǐn)?shù)在之間的頻數(shù)為;
頻率分布直方圖中間的矩形的高為.
(3)將之間的3個分?jǐn)?shù)編號為,之間的2個分?jǐn)?shù)編號為,
在之間的試卷中任取兩份的基本事件為:
,,,,,,,,,共10個,
其中,至少有一個在之間的基本事件有7個,
故至少有一份分?jǐn)?shù)在之間的概率是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某省各景點在大眾中的熟知度,隨機對15~65歲的人群抽樣了人,回答問題“某省有哪幾個著名的旅游景點?”統(tǒng)計結(jié)果如下圖表
組號 | 分組 | 回答正確 的人數(shù) | 回答正確的人數(shù) 占本組的頻率 |
第1組 | [15,25) | 0.5 | |
第2組 | [25,35) | 18 | |
第3組 | [35,45) | 0.9 | |
第4組 | [45,55) | 9 | 0.36 |
第5組 | [55,65] | 3 |
(1)分別求出的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,求第2,3,4組每組各抽取多少人?
(3)在(2)抽取的6人中隨機抽取2人,求所抽取的人中恰好沒有第3組人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在育民中學(xué)舉行的電腦知識競賽中,將九年級兩個班參賽的學(xué)生成績(得分均為整數(shù))進行整理后分成五組,繪制如圖所示的頻率分布直方圖.已知圖中從左到右的第一、第三、第四、第五小組的頻率分別是0.30,0.15,0.10,0.05,第二小組的頻數(shù)是40.
(1)求第二小組的頻率,并補全這個頻率分布直方圖;
(2)求這兩個班參賽的學(xué)生人數(shù)是多少;
(3)這兩個班參賽學(xué)生的成績的中位數(shù)應(yīng)落在第幾小組內(nèi).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦點在原點,左焦點,左頂點,上頂點,的周長為,的面積為.
(I)求橢圓的標(biāo)準(zhǔn)方程;
(II)是否存在與橢圓交于兩點的直線使得成立?若存在,求出實數(shù)的取值范圍,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了豐富高學(xué)生的課外生活,某校要組建數(shù)學(xué)計算機航空模型3個興趣小組,小明要選報其中的2個,則包含的樣本點共有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直角梯形所在的平面垂直于平面,.
(1)在直線上是否存在一點,使得平面?請證明你的結(jié)論.
(2)求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,
(1)若曲線在點處的切線為,求的值;
(2)討論函數(shù)的單調(diào)性;
(3)設(shè)函數(shù),若至少存在一個,使得成立,求實數(shù)的取值范.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且曲線的左焦點在直線上.
(1)若直線與曲線交于兩點,求的值;
(2)求曲線的內(nèi)接矩形的周長的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.
(I)證明:平面PQC⊥平面DCQ
(II)求二面角Q-BP-C的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com