【題目】某單位最近組織了一次健身活動,活動分為登山組和游泳組,且每個職工至多參加了其中一組,在參加活動的職工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山組的職工占參加活動總?cè)藬?shù)的,且該組中,青年人占50%,中年人占40%,老年人占10%.為了了解各組不同年齡層次的職工對本次活動的滿意程度,現(xiàn)用分層抽樣方法從參加活動的全體職工中抽取一個容量為200的樣本,試確定:
(1)游泳組中,青年人、中年人、老年人分別所占的比例;
(2)游泳組中,青年人、中年人、老年人分別應(yīng)抽取的人數(shù).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的兩個極值點為,且.
(1)求的值;
(2)若在(其中)上是單調(diào)函數(shù),求的取值范圍;
(3)當(dāng)時,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在軸上,離心率為,右焦點到右頂點的距離為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在與橢圓交于兩點的直線,使得成立?若存在,求出實數(shù)的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】未知數(shù)的個數(shù)多余方程個數(shù)的方程(組)叫做不定方程,最早提出不定方程的是我國的《九章算術(shù)》.實際生活中有很多不定方程的例子,例如“百雞問題”:公元五世紀(jì)末,我國古代數(shù)學(xué)家張丘建在《算經(jīng)》中提出了“百雞問題”:“雞母一,值錢三;雞翁一,值錢二;雞雛二,值錢一.百錢買百雞,問雞翁、母、雛各幾何?”
算法設(shè)計:
(1)設(shè)母雞、公雞、小雞數(shù)分別為、、,則應(yīng)滿足如下條件:
;.
(2)先分析一下三個變量的可能值.①的最小值可能為零,若全部錢用來買母雞,最多只能買33只,
故的值為中的整數(shù).②的最小值為零,最大值為50.③的最小值為零,最大值為100.
(3)對、、三個未知數(shù)來說,取值范圍最少.為提高程序的效率,先考慮對的值進行一一列舉.
(4)在固定一個的值的前提下,再對值進行一一列舉.
(5)對于每個,,怎樣去尋找滿足百年買百雞條件的.由于,值已設(shè)定,便可由下式得到:.
(6)這時的,,是一組可能解,它只滿足“百雞”條件,還未滿足“百錢”.是否真實解,還要看它們是否滿足,滿足即為所求解.
根據(jù)上述算法思想,畫出流程圖并用偽代碼表示.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司有30名男職員和20名女職員,公司進行了一次全員參與的職業(yè)能力測試,現(xiàn)隨機詢問了該公司5名男職員和5名女職員在測試中的成績(滿分為30分),可知這5名男職員的測試成績分別為16,24,18,
22,20,5名女職員的測試成績分別為18,23,23,18,23,則下列說法一定正確的是( )
A. 這種抽樣方法是分層抽樣
B. 這種抽樣方法是系統(tǒng)抽樣
C. 這5名男職員的測試成績的方差大于這5名女職員的測試成績的方差
D. 該測試中公司男職員的測試成績的平均數(shù)小于女職員的測試成績的平均數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某地參加2015 年夏令營的名學(xué)生的身體健康情況,將學(xué)生編號為,采用系統(tǒng)抽樣的方法抽取一個容量為的樣本,且抽到的最小號碼為,已知這名學(xué)生分住在三個營區(qū),從到在第一營區(qū),從到在第二營區(qū),從到在第三營區(qū),則第一、第二、第三營區(qū)被抽中的人數(shù)分別為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】心理學(xué)家分析發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗證這個結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué)(男30女20),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進行解答.選題情況如下表:(單位:人)
幾何題 | 代數(shù)題 | 總計 | |
男同學(xué) | 22 | 8 | 30 |
女同學(xué) | 8 | 12 | 20 |
總計 | 30 | 20 | 50 |
(1)能否據(jù)此判斷有97.5%的把握認(rèn)為視覺和空間能力與性別有關(guān)?
(2)現(xiàn)從選擇做幾何題的8名女生中任意抽取兩人對她們的答題情況進行全程研究,記甲、乙兩女生被抽到的人數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).
附表及公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,橢圓上任意一點到右焦點的距離的最大值為.
(1)求橢圓的方程;
(2)已知點是線段上異于的一個定點(為坐標(biāo)原點),是否存在過點且與軸不垂直的直線與橢圓交于兩點,使得,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com