【題目】已知兩點,,給出下列曲線方程:(1);(2);(3);(4),在曲線上存在點滿足的所有曲線是( )
A.(1)(2)(3)(4)B.(2)(3)
C.(1)(4)D.(2)(3)(4)
【答案】B
【解析】
求出線段MN的垂直平分線方程,然后分別和題目給出的四條曲線方程聯(lián)立,利用判別式判斷直線和曲線的交點情況,從而判斷給出的曲線上是否存在點P,使得||PA|=|PB|.
由A(1,),B(﹣4,),
得,A、B的中點坐標為(,0),
∴AB的垂直平分線方程為y﹣0=﹣2(x),即y=﹣2x﹣3.
(1)∵直線y=﹣2x﹣3與直線4x+2y﹣1=0平行,
∴直線4x+2y﹣1=0上不存在點P,使|PA|=|PB|;
(2)聯(lián)立,得5x2+12x+6=0,△=122﹣4×5×6=24>0.
∴直線y=﹣2x﹣3與x2+y2=3有交點,曲線x2+y2=3上存在點P滿足|PA|=|PB|;
(3)聯(lián)立,得,方程有解,
∴直線y=﹣2x﹣3與x21有交點,曲線x21上存在點P滿足|PA|=|PB|;
(4)聯(lián)立,得8x2+12x+5=0,△=122﹣4×8×5=﹣16<0.
∴直線y=﹣2x﹣3與x21沒有交點,曲線x21上不存在點P滿足|PA|=|PB|.
∴曲線上存在點P滿足|PA|=|PB|的所有曲線是(2)(3).
故選:B.
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,已知圓的參數(shù)方程為(為參數(shù),).以原點為極點,軸的正半軸為極軸,取相同的長度單位建立極坐標系,直線的極坐標方程是.
(1)若直線與圓有公共點,試求實數(shù)的取值范圍;
(2)當時,過點且與直線平行的直線交圓于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中a∈R.
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)當 時,設(shè)、為曲線上任意兩點,曲線在點處的切線斜率為k,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為,且滿足,,設(shè),則以下四個命題:(1)是等差數(shù)列;(2)中最大項是;(3)通項公式是;(4).其中真命題的序號是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從數(shù)列中取出部分項組成的數(shù)列稱為數(shù)列的“子數(shù)列”.
(1)若等差數(shù)列的公差,其子數(shù)列恰為等比數(shù)列,其中,,,求;
(2)若,,判斷數(shù)列是否為的“子數(shù)列”,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】市政府招商引資,為吸引外商,決定第一個月產(chǎn)品免稅,某外資廠該第一個月A型產(chǎn)品出廠價為每件10元,月銷售量為6萬件;第二個月,當?shù)卣_始對該商品征收稅率為 ,即銷售1元要征收元)的稅收,于是該產(chǎn)品的出廠價就上升到每件元,預計月銷售量將減少p萬件.
(1)將第二個月政府對該商品征收的稅收y(萬元)表示成p的函數(shù),并指出這個函數(shù)的定義域;
(2)要使第二個月該廠的稅收不少于1萬元,則p的范圍是多少?
(3)在第(2)問的前提下,要讓廠家本月獲得最大銷售金額,則p應(yīng)為多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設(shè)污水凈化管道(管道構(gòu)成Rt△FHE,H是直角項點)來處理污水.管道越長,污水凈化效果越好.設(shè)計要求管道的接口H是AB的中點,E,F(xiàn)分別落在線段BC,AD上.已知AB=20米,AD=米,記∠BHE=.
(1)試將污水凈化管道的長度L表示為的函數(shù),并寫出定義域;
(2)當取何值時,污水凈化效果最好?并求出此時管道的長度L.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com