【題目】若定義域為R的偶函數(shù)y=f(x)滿足f(x+2)=﹣f(x),且當x∈[0,2]時,f(x)=2﹣x2 , 則方程f(x)=sin|x|在[﹣3π,3π]內(nèi)根的個數(shù)是 .
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AA1=2,AC= ,過BC的中點D作平面ACB1的垂線,交平面ACC1A1于E,則BE與平面ABB1A1所成角的正切值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】交通管理部門為了解機動車駕駛員(簡稱駕駛員)對某新法規(guī)的知曉情況,對甲、乙、丙、丁四個社區(qū)做分層抽樣調(diào)查.假設四個社區(qū)駕駛員的總?cè)藬?shù)為N,其中甲社區(qū)有駕駛員96人.若在甲、乙、丙、丁四個社區(qū)抽取駕駛員的人數(shù)分別為12,21,25,43,則這四個社區(qū)駕駛員的總?cè)藬?shù)N為( )
A.101
B.808
C.1212
D.2012
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),為的導函數(shù),其中.
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)若方程有三個互不相同的根0,,,其中.
①是否存在實數(shù),使得成立?若存在,求出的值;若不存在,說明理由.
②若對任意的,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等比數(shù)列的前項和為,公比,,.
(1)求等比數(shù)列的通項公式;
(2)設,求的前項和.
【答案】(1)(2)
【解析】
(1)將已知兩式作差,利用等比數(shù)列的通項公式,可得公比,由等比數(shù)列的求和可得首項,進而得到所求通項公式;(2)求得bn=n,,由裂項相消求和可得答案.
(1)等比數(shù)列的前項和為,公比,①,
②.
②﹣①,得,則,
又,所以,
因為,所以,
所以,
所以;
(2),
所以前項和.
【點睛】
裂項相消法適用于形如(其中是各項均不為零的等差數(shù)列,c為常數(shù))的數(shù)列. 裂項相消法求和,常見的有相鄰兩項的裂項求和,還有一類隔一項的裂項求和,如或.
【題型】解答題
【結(jié)束】
22
【題目】已知函數(shù)的圖象上有兩點,.函數(shù)滿足,且.
(1)求證:;
(2)求證:;
(3)能否保證和中至少有一個為正數(shù)?請證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某險種的基本保費為(單位:元),繼續(xù)購買該險種的投保人稱為續(xù)保人,續(xù)保人的本年度的保費與其上年度的出險次數(shù)的關聯(lián)如下:
上年度出險次數(shù) | 0 | 1 | 2 | 3 | 4 | |
保費 |
設該險種一續(xù)保人一年內(nèi)出險次數(shù)與相應概率如下:
一年內(nèi)出險次數(shù) | 0 | 1 | 2 | 3 | 4 | |
概率 | 0.30 | 0.15 | 0.20 | 0.20 | 0.10 | 0.05 |
(Ⅰ)求一續(xù)保人本年度的保費高于基本保費的概率;
(Ⅱ)若一續(xù)保人本年度的保費高于基本保費,求其保費比基本保費高出的概率;
(Ⅲ)求續(xù)保人本年度的平均保費與基本保費的比值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一段時間內(nèi),分5次測得某種商品的價格x(萬元)和需求量y(t)之間的一組數(shù)據(jù)為:
1 | 2 | 3 | 4 | 5 | |
價格x | 1.4 | 1.6 | 1.8 | 2 | 2.2 |
需求量y | 12 | 10 | 7 | 5 | 3 |
已知,
(1)畫出散點圖;
(2)求出y對x的線性回歸方程;
(3)如價格定為1.9萬元,預測需求量大約是多少?(精確到0.01 t).
參考公式: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為改善居民的生活環(huán)境,政府擬將一公園進行改造擴建,已知原公園是直徑為200米的半圓形,出入口在圓心處,為居民小區(qū),的距離為200米,按照設計要求,以居民小區(qū)和圓弧上點為線段向半圓外作等腰直角三角形(為直角頂點),使改造后的公園成四邊形,如圖所示.
(1)若時,與出入口的距離為多少米?
(2)設計在什么位置時,公園的面積最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com