(1)求數(shù)列{an}的通項(xiàng)公式;
(2)在數(shù)列{bn}中,對(duì)任意正整數(shù)n,bn·都成立,設(shè)Sn為數(shù)列{bn}的前n項(xiàng)和,比較Sn與12的大;
(3)在點(diǎn)列An(2n,)(n∈N*)中,是否存在三個(gè)不同點(diǎn)Ak、Al、Am,使Ak、Al、Am在一條直線上?若存在,寫出一組在一條直線上的三個(gè)點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
(1)解:由=f(an),得==.?
∴-=4,即{}是以=1為首項(xiàng),4為公差的等差數(shù)列.?
有=1+(n-1)×4=4n-3,?
∵an>0,∴an=. ?
(2)解:∵bn·,?
∴bn·[(3n-1)+]=bn(4n2-1)=1.?
∴bn==(-).?
∴Sn=b1+b2+…+bn?
=[(1-)+(-)+…+(-)]?
=(1-)<.?
∴Sn<. ?
(3)解:點(diǎn)列An(2n,(n∈N*)中不可能有共線的三個(gè)點(diǎn). ?
根據(jù)(1),可得An(2n,)(n∈N*),?
令x=2n,y=,則y=(x≥2).?
點(diǎn)(x,y)在曲線x2-y2=1(x≥2,y≥)上,?
所以An(2n,)在曲線x2-y2=1(x≥2,y≥)上,而直線方程與x2-y2=1聯(lián)立組成的方程組最多有兩組不同的解.所以直線與x2-y2=1最多有兩個(gè)交點(diǎn).?
所以點(diǎn)列An(2n,)(n∈N*)中不可能有共線的三個(gè)點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
|
1 |
π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
A、(
| ||||
B、(
| ||||
C、(
| ||||
D、[
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2x-2-x | 2x+2-x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x-1 | x+a |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com