若函數(shù)f(x)的定義域與值域都為同一區(qū)間D,則稱函數(shù)f(x)為區(qū)間D上的“同勢(shì)”函數(shù).已知函數(shù)f(x)=x2-2x+1是區(qū)間D上的“同勢(shì)”函數(shù),則此區(qū)間可以是________.(只要寫出一個(gè)你認(rèn)為正確的區(qū)間即可)


分析:f(x)=x2-2x+1=(x-1)2,若使函數(shù)的定義域與值域是同一單調(diào)區(qū)間,可取對(duì)稱軸x=1右面的區(qū)間[a,b](a<1<b)則函數(shù)在[a,b]單調(diào)遞減,后遞增,則f(1)=a即可得a=0,此時(shí)區(qū)間[0,b],且有f(0)=b,解可得b
解答:f(x)=x2-2x+1=(x-1)2
若使函數(shù)的定義域與值域是同一單調(diào)區(qū)間
取對(duì)稱軸x=1右面的區(qū)間[a,b](a<1<b)則函數(shù)在[a,b]單調(diào)遞減,后遞增
則f(1)=a即可得a=0,此時(shí)區(qū)間[0,b],且有f(0)=b或f(b)=b(此時(shí)的b不存在)
解可得,b=1
滿足條件的一個(gè)區(qū)間[0,1]
故答案為:[0,1]
點(diǎn)評(píng):本題主要考查了二次函數(shù)的定義域域函數(shù)值域的求解,解題的關(guān)鍵是要熟練掌握二次函數(shù)的單調(diào)性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)是定義在R上的偶函數(shù),在(-∞,0]上是減函數(shù),且f(2)=0,則使得(x-1)f(x)<0的x的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)是定義在R上的偶函數(shù),在(-∞,0]上是減函數(shù),且f(2)=0,則使得f(x-1)<0的x的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)是定義在R上的偶函數(shù),在(-∞,0]上是減函數(shù),且f(1)=0,則使得f(x)<0的x得取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中:
①若函數(shù)f(x)的定義域?yàn)镽,則g(x)=f(x)+f(-x)一定是偶函數(shù);
②若f(x)是定義域?yàn)镽的奇函數(shù),對(duì)于任意的x∈R都有f(x)+f(2+x)=0,則函數(shù)f(x)的圖象關(guān)于直線x=1對(duì)稱;
③已知x1,x2是函數(shù)f(x)定義域內(nèi)的兩個(gè)值,且x1<x2,若f(x1)>f(x2),則f(x)是減函數(shù);
④若f(x)是定義在R上的奇函數(shù),且f(x+2)也為奇函數(shù),則f(x)是以4為周期的周期函數(shù).
其中正確的命題序號(hào)是
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cos2x+sinx
(Ⅰ)若函數(shù)f(x)的定義為R,求函數(shù)f(x)的值域;
(Ⅱ)函數(shù)f(x)在區(qū)間[0,
π2
]
上是不是單調(diào)函數(shù)?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案