【題目】某科考試中,從甲、乙兩個(gè)班級各抽取10名同學(xué)的成績進(jìn)行統(tǒng)計(jì)分析,兩班成績的莖葉圖如圖所示,成績不小于90分為及格. (Ⅰ)設(shè)甲、乙兩個(gè)班所抽取的10名同學(xué)成績方差分別為 、 ,比較 、 的大。ㄖ苯訉懗鼋Y(jié)果,不寫過程);
(Ⅱ)從甲班10人任取2人,設(shè)這2人中及格的人數(shù)為X,求X的分布列和期望;
(Ⅲ)從兩班這20名同學(xué)中各抽取一人,在已知有人及格的條件下,求抽到乙班同學(xué)不及格的概率.

【答案】解:(Ⅰ)由莖葉圖可得

(Ⅱ)由題可知X取值為0,1,2.

,

,

所以X的分布列為:

X

0

1

2

P(X)

所以

(Ⅲ)由莖葉圖可得,甲班有4人及格,乙班有5人及格.

設(shè)事件A=“從兩班這20名同學(xué)中各抽取一人,已知有人及格”,

事件B=“從兩班這20名同學(xué)中各抽取一人,乙班同學(xué)不及格”.

則在已知有人及格的條件下,抽到乙班同學(xué)不及格的概率:


【解析】(Ⅰ)由莖葉圖可得 .(Ⅱ)由題可知X取值為0,1,2.分另求出相應(yīng)的概率,由此能求出X的分布列.(Ⅲ)由莖葉圖可得,甲班有4人及格,乙班有5人及格.設(shè)事件A=“從兩班這20名同學(xué)中各抽取一人,已知有人及格”,事件B=“從兩班這20名同學(xué)中各抽取一人,乙班同學(xué)不及格”,由此利用條件概率計(jì)算公式能求出在已知有人及格的條件下,抽到乙班同學(xué)不及格的概率.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解莖葉圖的相關(guān)知識,掌握莖葉圖又稱“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進(jìn)行比較,將數(shù)的大小基本不變或變化不大的位作為一個(gè)主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個(gè)主干后面的幾個(gè)數(shù),每個(gè)數(shù)具體是多少,以及對離散型隨機(jī)變量及其分布列的理解,了解在射擊、產(chǎn)品檢驗(yàn)等例子中,對于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡稱分布列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時(shí),多邊形的面積可無限接近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”,劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”,如圓是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出的值為( )(參考數(shù)據(jù):sin15°=0.2588,sin7.50=0.1305)
A.12
B.24
C.48
D.96

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(1)當(dāng)時(shí),求函數(shù)f(x)的值域;

(2)若恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣1)ex﹣kx2+2,k∈R. (Ⅰ) 當(dāng)k=0時(shí),求f(x)的極值;
(Ⅱ) 若對于任意的x∈[0,+∞),f(x)≥1恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著網(wǎng)絡(luò)的發(fā)展,人們可以在網(wǎng)絡(luò)上購物、玩游戲、聊天、導(dǎo)航等,所以人們對上網(wǎng)流量的需求越來越大.某電信運(yùn)營商推出一款新的“流量包”套餐.為了調(diào)查不同年齡的人是否愿意選擇此款“流量包”套餐,隨機(jī)抽取50個(gè)用戶,按年齡分組進(jìn)行訪談,統(tǒng)計(jì)結(jié)果如表.

組號

年齡

訪談人數(shù)

愿意使用

1

[18,28)

4

4

2

[28,38)

9

9

3

[38,48)

16

15

4

[48,58)

15

12

5

[58,68)

6

2

(Ⅰ)若在第2、3、4組愿意選擇此款“流量包”套餐的人中,用分層抽樣的方法抽取12人,則各組應(yīng)分別抽取多少人?
(Ⅱ)若從第5組的被調(diào)查者訪談人中隨機(jī)選取2人進(jìn)行追蹤調(diào)查,求2人中至少有1人愿意選擇此款“流量包”套餐的概率.
(Ⅲ)按以上統(tǒng)計(jì)數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷以48歲為分界點(diǎn),能否在犯錯(cuò)誤不超過1%的前提下認(rèn)為,是否愿意選擇此款“流量包”套餐與人的年齡有關(guān)?

年齡不低于48歲的人數(shù)

年齡低于48歲的人數(shù)

合計(jì)

愿意使用的人數(shù)

不愿意使用的人數(shù)

合計(jì)

參考公式: ,其中:n=a+b+c+d.

P(k2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(diǎn)O為坐標(biāo)原點(diǎn),橢圓E: (a≥b>0)的右頂點(diǎn)為A,上頂點(diǎn)為B,過點(diǎn)O且斜率為 的直線與直線AB相交M,且
(Ⅰ)求橢圓E的離心率e;
(Ⅱ)PQ是圓C:(x﹣2)2+(y﹣1)2=5的一條直徑,若橢圓E經(jīng)過P,Q兩點(diǎn),求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中, , , 的中點(diǎn),將沿折起,使間的距離為,則點(diǎn)到平面的距離為(

A. B. C. 1 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+c,x∈[﹣2,2]表示的曲線過原點(diǎn),且在x=±1處的切線斜率均為﹣1,給出以下結(jié)論: ①f(x)的解析式為f(x)=x3﹣4x,x∈[﹣2,2];
②f(x)的極值點(diǎn)有且僅有一個(gè);
③f(x)的最大值與最小值之和等于0.
其中正確的結(jié)論有(
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正四面體P﹣ABC中,點(diǎn)M是棱PC的中點(diǎn),點(diǎn)N是線段AB上一動(dòng)點(diǎn),且 ,設(shè)異面直線 NM 與 AC 所成角為α,當(dāng) 時(shí),則cosα的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案