一個袋中裝有四個形狀大小完全相同的球,球的編號分別為1,2,3,4。
(Ⅰ)從袋中隨機(jī)抽取兩個球,求取出的球的編號之和不大于4的概率;
(Ⅱ)先從袋中隨機(jī)取一個球,該球的編號為,將球放回袋中,然后再從袋中隨機(jī)取一個球,該球的編號為,求+2的概率。

(1)(2)

解析試題分析:(1)從袋中隨機(jī)抽取兩個球,是隨機(jī)事件,基本事件數(shù)為6,其中編號之和不大于4的有2情況
根據(jù)隨機(jī)事件的概率公式可求得取出的球的編號之和不大于4的概率為;(2)抽取的結(jié)果是(m,n),寫出所有的可能結(jié)果總數(shù),,找出取值+2的結(jié)果數(shù),由隨機(jī)事件的概率公式可求出+2的概率
試題解析:(1)從袋中隨機(jī)抽取兩個球,其一切可能結(jié)果組成的基本事件由(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6個,從袋中隨機(jī)抽取兩個球,取出的球的編號之和不大于4的事件有1,2),(1,3)2個,
因此所求事件的 概率為.
(2))先從袋中隨機(jī)取一個球,記下球的編號為,放回后,再從袋中隨機(jī)取一個球,記下球的編號為,其一切可能結(jié)果(m,n)有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共16個,滿足條件+2有13個,根據(jù)隨機(jī)事件的概率公式可得,+2的概率為.
考點(diǎn):隨機(jī)事件的概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

市民李先生居住在甲地,工作在乙地,他的小孩就讀的小學(xué)在丙地,三地之間的道路情況如圖所示.假設(shè)工作日不走其它道路,只在圖示的道路中往返,每次在路口選擇道路是隨機(jī)的.同一條道路去程與回程是否堵車相互獨(dú)立.假設(shè)李先生早上需要先開車送小孩去丙地小學(xué),再返回經(jīng)甲地趕去乙地上班.假設(shè)道路A,B,D上下班時間往返出現(xiàn)擁堵的概率都是,道路C,E上下班時間往返出現(xiàn)擁堵的概率都是,只要遇到擁堵上學(xué)和上班的都會遲到.

(1)求李先生的小孩按時到校的概率;
(2)李先生是否有七成把握能夠按時上班?
(3)設(shè)X表示李先生下班時從單位乙到達(dá)小學(xué)丙遇到擁堵的次數(shù),求X的均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某足球俱樂部2013年10月份安排4次體能測試,規(guī)定:按順序測試,一旦測試合格就不必參加以后的測試,否則4次測試都要參加。若運(yùn)動員小李4次測試每次合格的概率組成一個公差為的等差數(shù)列,他第一次測試合格的概率不超過,且他直到第二次測試才合格的概率為
(Ⅰ)求小李第一次參加測試就合格的概率P1;
(2)求小李10月份參加測試的次數(shù)x的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

湖南省在學(xué)業(yè)水平考查中設(shè)計了物理學(xué)科的實驗考查方案:考生從道備選試驗考查題中一次隨機(jī)抽取題,并按照題目要求獨(dú)立完成全部實驗操作.規(guī)定:至少正確完成其中題便通過考查.已知道備選題中文科考生甲有題能正確完成,題不能完成;文科考生乙每題正確完成的概率都是,且每題正確完成與否互不影響.
(Ⅰ)分別寫出文科考生甲正確完成題數(shù)和文科考生乙正確完成題數(shù)的概率分布列,并計算各自的數(shù)學(xué)期望;
(Ⅱ)試從兩位文科考生正確完成題數(shù)的數(shù)學(xué)期望及通過考查的概率分析比較這兩位考生的實驗操作能力.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

成都七中為綠化環(huán)境,移栽了銀杏樹2棵,梧桐樹3棵。它們移栽后的成活率分別為且每棵樹是否存活互不影響,求移栽的5棵樹中:
(1)銀杏樹都成活且梧桐樹成活2棵的概率;
(2)成活的棵樹的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲有一只放有x個紅球,y個黃球,z個白球的箱子,乙有一只放有3個紅球,2個黃球,1個白球的箱子,
(1)兩個各自從自己的箱子中任取一球,規(guī)定:當(dāng)兩球同色時甲勝,異色時乙勝。若用x、y、z表示甲勝的概率;
2)在(1)下又規(guī)定當(dāng)甲取紅、黃、白球而勝的得分分別為1、2、3分,否則得0分,求甲得分的期望的最大值及此時x、y、z的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

淮南八公山某種豆腐食品是經(jīng)過A、B、C三道工序加工而成的,A、B、C工序的產(chǎn)品合格率分別為、.已知每道工序的加工都相互獨(dú)立,三道工序加工的產(chǎn)品都為合格時產(chǎn)品為一等品;有兩次合格為二等品;其它的為廢品,不進(jìn)入市場.
(Ⅰ)正式生產(chǎn)前先試生產(chǎn)2袋食品,求這2袋食品都為廢品的概率;
(Ⅱ)設(shè)ξ為加工工序中產(chǎn)品合格的次數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

氣象部門提供了某地今年六月份(30天)的日最高氣溫的統(tǒng)計表如下:

日最高氣溫t (單位:℃)
t22℃
22℃<t28℃
28℃<t32℃

天數(shù)
6
12
   

由于工作疏忽,統(tǒng)計表被墨水污染,Y和Z數(shù)據(jù)不清楚,但氣象部門提供的資料顯示,六月份的日最高氣溫不高于32℃的頻率為0.9.
某水果商根據(jù)多年的銷售經(jīng)驗,六月份的日最高氣溫t (單位:℃)對西瓜的銷售影響如下表:
日最高氣溫t (單位:℃)
t22℃
22℃<t28℃
28℃<t32℃

日銷售額(千元)
2
5
    6
8
(Ⅰ) 求, 的值;
(Ⅱ) 若視頻率為概率,求六月份西瓜日銷售額的期望和方差;
(Ⅲ) 在日最高氣溫不高于32℃時,求日銷售額不低于5千元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

現(xiàn)有甲、乙兩個靶.某射手向甲靶射擊兩次,每次命中的概率為,每命中一次得1分,沒有命中得0分;向乙靶射擊一次,命中的概率為,命中得2分,沒有命中得0分.該射手每次射擊的結(jié)果相互獨(dú)立.假設(shè)該射手完成以上三次射擊.
(I)求該射手恰好命中兩次的概率;
(II)求該射手的總得分的分布列及數(shù)學(xué)期望;

查看答案和解析>>

同步練習(xí)冊答案