令
,
,
則
.
令
,
則
,
.
當(dāng)
時(shí),
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
,點(diǎn)A(s,f(s)), B(t,f(t))
(I) 若
,求函數(shù)
的單調(diào)遞增區(qū)間;
(II)若函數(shù)
的導(dǎo)函數(shù)
滿足:當(dāng)|x|≤1時(shí),有|
|≤
恒成立,求函數(shù)
的解析表達(dá)式;
(III)若0<a<b, 函數(shù)
在
和
處取得極值,且
,證明:
與
不可能垂直.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分16分)已知函數(shù)
.(Ⅰ)當(dāng)
時(shí),求證:函數(shù)
在
上單調(diào)遞增;(Ⅱ)若函數(shù)
有三個(gè)零點(diǎn),求
的值;
(Ⅲ)若存在
,使得
,試求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
.
(1)若函數(shù)
的圖象上有與
軸平行的切線,求
的范圍;
(2)若
,(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;(Ⅱ)證明對任意的
,
,不等式
恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)a>0,函數(shù)f(x)=
,b為常數(shù).
(1)證明:函數(shù)f(x)的極大值點(diǎn)和極小值點(diǎn)各有一個(gè);
(2)若函數(shù)f(x)的極大值為1,極小值為-1,試求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
,
,設(shè)
.
(Ⅰ)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若以函數(shù)
圖象上任意一點(diǎn)
為切點(diǎn)的切線斜率
恒成立,求實(shí)數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分15分)函數(shù)
在
處取得極小值–2.(I)求
的單調(diào)區(qū)間;(II)若對任意的
,函數(shù)
的圖像
與函數(shù)
的圖像
至多有一個(gè)交點(diǎn).求實(shí)數(shù)
的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
求和Sn=12+22x+32x2+…+n2xn-1,(x≠0,n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
是二次函數(shù),不等式
的解集是
且
在區(qū)間
上的最大值是12。
(I)求
的解析式;
(II)是否存在實(shí)數(shù)
使得方程
在區(qū)間
內(nèi)有且只有兩個(gè)不等的實(shí)數(shù)根?若存在,求出
的取值范圍;若不存在,說明理由。
查看答案和解析>>