【題目】設(shè)m,n表示兩條不同的直線,α,β表示兩個(gè)不同的平面,則下列命題不正確的是 ( )
A. m⊥α,m⊥β,則α∥β B. m∥n,m⊥α,則n⊥α
C. m⊥α,n⊥α,則m∥n D. m∥α,α∩β=n,則m∥n
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從裝有6個(gè)紅球和5個(gè)白球的口袋中任取4個(gè)球,那么下列是互斥而不對立的事件是( )
A. 至少一個(gè)紅球與都是紅球
B. 至少一個(gè)紅球與至少一個(gè)白球
C. 至少一個(gè)紅球與都是白球
D. 恰有一個(gè)紅球與恰有兩個(gè)紅球
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓:的左、右焦點(diǎn)分別為、,過點(diǎn)、分別作兩條平行直線、交橢圓于點(diǎn)、、、.
(1)求證:;
(2)求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線l1∥l2,在l1上取3個(gè)點(diǎn),在l2上取2個(gè)點(diǎn),由這5個(gè)點(diǎn)能確定平面的個(gè)數(shù)為 ( )
A. 5 B. 4 C. 9 D. 1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某籃球比賽中,根據(jù)甲和乙兩人的得分情況得到如圖所示的莖葉圖.
(1)從莖葉圖的特征來說明他們誰發(fā)揮得更穩(wěn)定;
(2)用樣本的數(shù)字特征驗(yàn)證他們誰發(fā)揮得更好.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)平面α∩β=EF,AB⊥α,CD⊥α,垂足分別是B,D,如果增加一個(gè)條件,就能推出BD⊥EF,這個(gè)條件不可能是下面四個(gè)選項(xiàng)中的 ( )
A. AC⊥β
B. AC⊥EF
C. AC與BD在β內(nèi)的射影在同一條直線上
D. AC與α,β所成的角相等
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓錐頂點(diǎn)為,底面圓心為,其母線與底面所成的角為45°,和是底面圓上的兩條平行的弦,.
(1)證明:平面與平面的交線平行于底面;
(2)求軸與平面所成的角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間生產(chǎn)一種儀器的固定成本是元,每生產(chǎn)一臺該儀器需要增加投入元,已知總收入滿足函數(shù):,其中是儀器的月產(chǎn)量.
(利潤=總收入-總成本).
(1)將利潤表示為月產(chǎn)量的函數(shù);
(2)當(dāng)月產(chǎn)量為何值時(shí),車間所獲利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右頂點(diǎn)為、,左右焦點(diǎn)為,其長半軸的長等于焦距,點(diǎn)是橢圓上的動(dòng)點(diǎn),面積的最大值為.
(1)求橢圓的方程;
(2)設(shè)為直線上不同于點(diǎn)的任意一點(diǎn),若直線、分別與橢圓交于異于、的點(diǎn)、,判斷點(diǎn)與以為直徑的圓的位置關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com