【題目】下列命題中正確的是( )
A. 命題“”的否定是“”
B. 命題“為真”是命題“為真”的必要不充分條件
C. 若“,則”的否命題為真
D. 若實(shí)數(shù),則滿足的概率為.
【答案】C
【解析】
選擇題可以逐一判斷,對于A項(xiàng),x2﹣x≤0”的否定應(yīng)該是x2﹣x>0”.
對于B項(xiàng),“p∧q為真”是“pVq為真”的充分不必要條件.
對于C選項(xiàng),若“,則”的否命題為“若am2>bm2,則 a>b”,正確.
對于D項(xiàng),由幾何概型,x2+y2<1的概率為,應(yīng)由對立事件的概率的知識(shí)來求x2+y2≥1的概率.
由全稱命題的否定是特稱命題可知“x∈R,x2﹣x≤0”的否定應(yīng)該是“x∈R,x2﹣x>0”,因此選項(xiàng)A不正確.
對于B項(xiàng),p∧q為真可知p、q均為真,則有pVq為真,反之不成立,故“p∧q為真”是“pVq為真”的充分不必要條件,因此B錯(cuò)誤.
對于選項(xiàng)C,“若am2≤bm2,則a≤b”的否命題是“若am2>bm2,則a>b”,顯然其為真命題.
對于D項(xiàng),由幾何概型可知,區(qū)域D為邊長為1的正方形,區(qū)域d為1為半徑,原點(diǎn)為圓心的圓外部分,則滿足x2+y2≥1的概率為p==1﹣=,故D錯(cuò)誤.
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題:函數(shù)的兩個(gè)零點(diǎn)分別在區(qū)間和上;命題:函數(shù)有極值.若命題,為真命題的實(shí)數(shù)的取值集合分別記為,.
(1)求集合,;
(2)若命題“且”為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表是某校120名學(xué)生假期閱讀時(shí)間(單位: 小時(shí))的頻率分布表,現(xiàn)用分層抽樣的方法從,,,四組中抽取20名學(xué)生了解其閱讀內(nèi)容,那么從這四組中依次抽取的人數(shù)是( )
分組 | 頻數(shù) | 頻率 |
12 | 0.10 | |
30 | ||
0.40 | ||
n | 0.25 | |
合計(jì) | 120 | 1.00 |
A.2,5,8,5B.2,5,9,4C.4,10,4,2D.4,10,3,3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校實(shí)行自主招生,參加自主招生的學(xué)生從8個(gè)試題中隨機(jī)挑選出4個(gè)進(jìn)行作答,至少答對3個(gè)才能通過初試已知甲、乙兩人參加初試,在這8個(gè)試題中甲能答對6個(gè),乙能答對每個(gè)試題的概率為,且甲、乙兩人是否答對每個(gè)試題互不影響.
(1)試通過概率計(jì)算,分析甲、乙兩人誰通過自主招生初試的可能性更大;
(2)若答對一題得5分,答錯(cuò)或不答得0分,記乙答題的得分為,求的分布列及數(shù)學(xué)期望和方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱柱中,底面ABCD是等腰梯形,,,,頂點(diǎn)在底面ABCD內(nèi)的射影恰為點(diǎn)C.
(1)求證:BC⊥平面ACD1;
(2)若直線DD1與底面ABCD所成的角為,求平面與平面ABCD所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的個(gè)數(shù)為______.
(1).設(shè)是一個(gè)區(qū)間,若對任意,,當(dāng)時(shí),都有,則在上單調(diào)遞增;
(2).函數(shù)在定義域上是單調(diào)遞減函數(shù);
(3).函數(shù)在定義域上是單調(diào)遞增函數(shù);
(4).集合與相等.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電動(dòng)車售后服務(wù)調(diào)研小組從汽車市場上隨機(jī)抽取20輛純電動(dòng)汽車調(diào)查其續(xù)駛里程(單次充電后能行駛的最大里程),被調(diào)查汽車的續(xù)駛里程全部介于50公里和300公里之間,將統(tǒng)計(jì)結(jié)果分成5組:,繪制成如圖所示的頻率分布直方圖.
(1)求續(xù)駛里程在的車輛數(shù);
(2)求續(xù)駛里程的平均數(shù);
(3)若從續(xù)駛里程在的車輛中隨機(jī)抽取2輛車,求其中恰有一輛車的續(xù)駛里程在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一個(gè)同學(xué)家開了一個(gè)小賣部,他為了研究氣溫對熱飲飲料銷售的影響.經(jīng)過統(tǒng)計(jì),得到一個(gè)賣出的熱飲杯數(shù)與當(dāng)天氣溫的散點(diǎn)圖和對比表
攝氏溫度 | —5 | 4 | 7 | 10 | 15 | 23 | 30 | 36 |
熱飲杯數(shù) | 162 | 128 | 115 | 135 | 89 | 71 | 63 | 37 |
(參考公式),
(參考數(shù)據(jù)),,,.樣本中心點(diǎn)為.
(1)從散點(diǎn)圖可以發(fā)現(xiàn),各點(diǎn)散布在從左上角到右下角的區(qū)域里.因此,氣溫與當(dāng)天熱飲銷售杯數(shù)之間成負(fù)相關(guān),即氣溫越高,當(dāng)天賣出去的熱飲杯數(shù)越少.統(tǒng)計(jì)中常用相關(guān)系數(shù)來衡量兩個(gè)變量之間線性關(guān)系的強(qiáng)弱.統(tǒng)計(jì)學(xué)認(rèn)為,對于變量、,如果,那么負(fù)相關(guān)很強(qiáng);如果,那么正相關(guān)很強(qiáng);如果,那么相關(guān)性一般;如果,那么相關(guān)性較弱.請根據(jù)已知數(shù)據(jù),判斷氣溫與當(dāng)天熱飲銷售杯數(shù)相關(guān)性的強(qiáng)弱.
(2)(i)請根據(jù)已知數(shù)據(jù)求出氣溫與當(dāng)天熱飲銷售杯數(shù)的線性回歸方程;
(ii)記為不超過的最大整數(shù),如,.對于(1)中求出的線性回歸方程,將視為氣溫與當(dāng)天熱飲銷售杯數(shù)的函數(shù)關(guān)系.已知?dú)鉁?/span>與當(dāng)天熱飲每杯的銷售利潤的關(guān)系是(單位:元),請問當(dāng)氣溫為多少時(shí),當(dāng)天的熱飲銷售利潤總額最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】①某學(xué)校高二年級共有526人,為了調(diào)查學(xué)生每天用于休息的時(shí)間,決定抽取10%的學(xué)生進(jìn)行調(diào)查;②運(yùn)動(dòng)會(huì)的工作人員為參加接力賽的6支隊(duì)伍安排跑道;③一次數(shù)學(xué)月考中,某班有10人的成績在100分以上,32人的成績在90~100分,12人的成績低于90分,現(xiàn)從中抽取9人有解有關(guān)情況.針對這三個(gè)事件,恰當(dāng)?shù)某闃臃椒ǚ謩e為( )
A.分層抽樣、分層抽樣、簡單隨機(jī)抽樣B.系統(tǒng)抽樣、簡單隨機(jī)抽樣、分層抽樣
C.簡單隨機(jī)抽樣、簡單隨機(jī)抽樣、分層抽樣D.系統(tǒng)抽樣、分層抽樣、簡單隨機(jī)抽樣
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com