【題目】如圖,在四棱錐中,側(cè)面底面為正三角形,,,點(diǎn),分別為線段、的中點(diǎn),、分別為線段、上一點(diǎn),且.

(1)確定點(diǎn)的位置,使得平面;

(2)點(diǎn)為線段上一點(diǎn),且,若平面將四棱錐分成體積相等的兩部分,求三棱錐的體積.

【答案】1)詳見(jiàn)解析;(2.

【解析】試題分析:(1)運(yùn)用線面平行的判定定理推證;(2)借助三棱錐的體積公式求解:

試題解析:

解:(1)為線段的靠近的三等分點(diǎn).

的中點(diǎn),連接,在線段上取一點(diǎn),使得,∵,∴,

,

當(dāng)為線段的靠近的三等分點(diǎn)時(shí),即,.

,∴平面平面,∵平面,∴平面.

(2)∵三棱錐與四棱錐的高相同,

與四邊形的面積相等.

設(shè),則,∵

,

解得.

中點(diǎn),∵為正三角形,∴,∵平面平面,

平面,過(guò),交,則平面

,,∴,∴.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一臺(tái)機(jī)器按不同的轉(zhuǎn)速生產(chǎn)出來(lái)的某機(jī)械零件有一些會(huì)有缺點(diǎn),每小時(shí)生產(chǎn)有缺點(diǎn)的零件的多少隨機(jī)器的運(yùn)轉(zhuǎn)的速度的變化而變化,下表為抽樣試驗(yàn)的結(jié)果:

轉(zhuǎn)速/(轉(zhuǎn)/秒)

16

14

12

8

每小時(shí)生產(chǎn)有缺點(diǎn)的零件數(shù)/件

11

9

8

5

(1)畫(huà)出散點(diǎn)圖;

(2)如果對(duì)有線性相關(guān)關(guān)系,請(qǐng)畫(huà)出一條直線近似地表示這種線性關(guān)系;

(3)在實(shí)際生產(chǎn)中,若它們的近似方程為,允許每小時(shí)生產(chǎn)的產(chǎn)品中有缺點(diǎn)的零件最多為件,那么機(jī)器的運(yùn)轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2-2aln x+(a-2)x,a∈R.

(1)當(dāng)a=1時(shí),求函數(shù)f(x)的圖象在點(diǎn)(1,f(1))處的切線方程.

(2)是否存在實(shí)數(shù)a,對(duì)任意的x1,x2∈(0,+∞)且x1≠x2>a恒成立?若存在,求出a的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)若曲線僅在兩個(gè)不同的點(diǎn)處的切線都經(jīng)過(guò)點(diǎn),求證:,或;

(2)當(dāng)時(shí),若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各式: 

(1);

(2)已知,則;

(3)函數(shù)的圖象與函數(shù)的圖象關(guān)于y軸對(duì)稱;

(4)函數(shù)的定義域是R,則m的取值范圍是;

(5)函數(shù)的遞增區(qū)間為.

正確的______________________.(把你認(rèn)為正確的序號(hào)全部寫(xiě)上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)向量a=(x,1),b=(1,y),c=(2,-4),且a⊥c,b∥c,求|a+b|和a+b與c的夾角;

(2)設(shè)O為△ABC的外心,已知AB=3,AC=4,非零實(shí)數(shù)x,y滿足=x+y,且x+2y=1,求cos ∠BAC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《中華人民共和國(guó)個(gè)人所得稅法》規(guī)定,公民全月工資所得不超過(guò)3500元的部分不必納稅,超過(guò)3500元的部分為全月應(yīng)納稅所得額,此項(xiàng)稅款按下表分段累計(jì)計(jì)算:

(1)某人10月份應(yīng)交此項(xiàng)稅款為350元,則他10月份的工資收入是多少?

(2)假設(shè)某人的月收入為元, ,記他應(yīng)納稅為元,求的函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙三人按下面的規(guī)則進(jìn)行乒乓球比賽:第一局由甲、乙參加而丙輪空,以后每一局由前一局的獲勝者與

輪空者進(jìn)行比賽,而前一局的失敗者輪空.比賽按這種規(guī)則一直進(jìn)行到其中一人連勝兩局或打滿6局時(shí)停止.設(shè)在每局中參賽者勝負(fù)的概率均為,且各局勝負(fù)相互獨(dú)立,求:

(1)打滿3局比賽還未停止的概率;

(2)比賽停止時(shí)已打局?jǐn)?shù)ξ的分布列與期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知以點(diǎn)C為圓心的圓經(jīng)過(guò)點(diǎn)A(1,0)B(3,4),且圓心在直線x3y150上.設(shè)點(diǎn)P在圓C上,求PAB的面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案