【題目】某家庭進(jìn)行理財投資,根據(jù)長期收益率市場預(yù)測投資類產(chǎn)品的收益與投資額成正比,投資類產(chǎn)品的收益與投資額的算術(shù)平方根成正比已知投資1萬元時兩類產(chǎn)品的收益分別為0125萬元和05萬元

1分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系;

2該家庭有20萬元資金,全部用于理財投資問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?

【答案】1fxxx≥0),gxx≥02投資A類為16萬元,投資B類為4最大3萬元

【解析】

試題分析:1由投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險型產(chǎn)品的收益與投資額的算術(shù)平方根成正比,結(jié)合函數(shù)圖象,我們可以利用待定系數(shù)法來求兩種產(chǎn)品的收益與投資的函數(shù)關(guān)系;

21的結(jié)論,我們設(shè)設(shè)投資債券類產(chǎn)品x萬元則股票類投資為20-x萬元這時可以構(gòu)造出一個關(guān)于收益y的函數(shù),然后利用求函數(shù)最大值的方法進(jìn)行求解

試題解析:1設(shè)兩類產(chǎn)品的收益與投資額的函數(shù)分別為fx=k1x,gx=k2

由已知得f1=k1g1=k2,所以fxxx≥0),gxx≥0).

2設(shè)投資類產(chǎn)品為x萬元,則投資類產(chǎn)品為20-x萬元

依題意得y=fx+g20-x0≤x≤20).

令t=0≤t≤2),則y=t=-t-22+3,

所以當(dāng)t=2,即x=16時,收益最大,ymax=3萬元

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】畫出下列函數(shù)的圖像,并根據(jù)圖像說出函數(shù)y=f(x)的單調(diào)區(qū)間,以及在各單調(diào)區(qū)間上函數(shù)y=f(x)是增函數(shù)還是減函數(shù)。

(1)y=x2-5x-6; (2)y=|4-x2|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,BA=BC,以AB為直徑的⊙O分別交AC、BC于點D、E,BC的延長線于⊙O的切線AF交于點F

(1)求證:∠ABC=2∠CAF;

(2)若,CEEB=1∶4,求CE的長

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,以原點為圓心,橢圓的長半軸長為半徑的圓與直線相切.

)求橢圓的標(biāo)準(zhǔn)方程;

)已知點,為動直線與橢圓的兩個交點,問:在軸上是否存在定點,使得為定值?若存在,試求出點的坐標(biāo)和定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人練習(xí)罰球,每人練習(xí)6組,每組罰球20個,命中個數(shù)莖葉圖如下:

(1)求甲命中個數(shù)的中位數(shù)和乙命中個數(shù)的眾數(shù);

(2)通過計算,比較甲乙兩人的罰球水平.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某保險公司有一款保險產(chǎn)品的歷史收益率(收益率利潤保費收入)的頻率分布直方圖如圖所示:

(1)試估計這款保險產(chǎn)品的收益率的平均值;

(2)設(shè)每份保單的保費在20元的基礎(chǔ)上每增加元,對應(yīng)的銷量為(萬份).從歷史銷售記錄中抽樣得到如下5組的對應(yīng)數(shù)據(jù):

25

30

38

45

52

銷量為(萬份)

7.5

7.1

6.0

5.6

4.8

由上表,知有較強(qiáng)的線性相關(guān)關(guān)系,且據(jù)此計算出的回歸方程為

(。┣髤(shù)的值;

(ⅱ)若把回歸方程當(dāng)作的線性關(guān)系,用(1)中求出的收益率的平均值作為此產(chǎn)品的收益率,試問每份保單的保費定為多少元時此產(chǎn)品可獲得最大利潤,并求出最大利潤.注:保險產(chǎn)品的保費收入每份保單的保費銷量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線, .

(1)求證:對,直線與圓總有兩個不同的交點;

(2)求弦的中點的軌跡方程,并說明其軌跡是什么曲線;

(3)是否存在實數(shù),使得原上有四點到直線的距離為?若存在,求出的范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知矩形的對角線交于點,邊所在直線的方程為,點在邊所在的直線上.

(1)求矩形的外接圓的方程;

(2)已知直線),求證:直線與矩形的外接圓恒相交,并求出相交的弦長最短時的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】吉安一中舉行了一次環(huán)保知識競賽活動,解本了次競賽學(xué)生成績情況,從中抽取部分學(xué)生的分?jǐn)?shù)(分取正整數(shù),滿分為樣(樣本容)進(jìn)行統(tǒng)計. 按照 的分作出率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在的數(shù)據(jù)).

(1)求樣本容量率分布直方圖中的值;

(2)在選取的樣本中,從競賽學(xué)生成績是分以上(含分)的同學(xué)中隨機(jī)抽取名同學(xué)到市政廣場參加環(huán)保知識宣傳的志愿者活動,設(shè)表示所抽取的名同學(xué)中得分在的學(xué)生人數(shù),的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案