【題目】若直線yxm與曲線x恰有一個公共點,則實數(shù)m的取值范圍是______.

【答案】{m|-1<m≤1或m=-}

【解析】

x=,化簡得x2+y2=1,注意到x≥0,所以這個曲線應(yīng)該是半徑為1,圓心是(0,0)的半圓,且其圖象只在一、四象限.畫出圖象,這樣因為直線與其只有一個交點,由此能求出實數(shù)m的取值范圍.

x=,化簡得x2+y2=1,注意到x≥0,

所以這個曲線應(yīng)該是半徑為1,圓心是(0,0)的半圓,

且其圖象只在一、四象限.

畫出圖象,這樣因為直線與其只有一個交點,

從圖上看出其三個極端情況分別是:

①直線在第四象限與曲線相切,

②交曲線于(0,﹣1)和另一個點,

③與曲線交于點(0,1).

直線在第四象限與曲線相切時解得m=﹣,

當直線y=x+m經(jīng)過點(0,1)時,m=1.

當直線y=x+m經(jīng)過點(0,﹣1)時,m=﹣1,所以此時﹣1<m≤1.

綜上滿足只有一個公共點的實數(shù)m的取值范圍是:

﹣1<m≤1m=﹣

故答案為:{m|-1<m≤1或m=-}.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù),( ),若對任意,總存在,使得成立,則的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠BAD= ,AB=2,AD=1,若M、N分別是邊AD、CD上的點,且滿足 =λ,其中λ∈[0,1],則 的取值范圍是(
A.[﹣3,﹣1]
B.[﹣3,1]
C.[﹣1,1]
D.[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)= (x>0),計算觀察以下格式: f1(x)=f(x),f2(x)=f(f1(x)),f3(x)=f(f2(x)),f4(x)=f(f3(x)),…
根據(jù)以上事實得到當n∈N*時,fn(1)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線f(x)= ax3﹣blnx在x=1處的切線方程為y=﹣2x+
(Ⅰ)求f(x)的極值;
(Ⅱ)證明:x>0時, (e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)f(x)=ax-2.

(1)當a=3時,解不等式|f(x)|<4;

(2)解關(guān)于x的不等式|f(x)|<4;

(3)若關(guān)于x的不等式|f(x)|≤3對任意x∈[0,1]恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三國魏人劉徽,自撰《海島算經(jīng)》,專論測高望遠.其中有一題:今有望海島,立兩表齊,高三丈,前後相去千步,令後表與前表相直.從前表卻行一百二十三步,人目著地取望島峰,與表末參合.從後表卻行百二十七步,人目著地取望島峰,亦與表末參合.問島高幾何?譯文如下:要測量海島上一座山峰A的高度AH,立兩根高三丈的標桿BC和DE,前后兩桿相距BD=1000步,使后標桿桿腳D與前標桿桿腳B與山峰腳H在同一直線上,從前標桿桿腳B退行123步到F,人眼著地觀測到島峰,A、C、F三點共線,從后標桿桿腳D退行127步到G,人眼著地觀測到島峰,A、E、G三點也共線,則山峰的高度AH=( ) 步(古制:1步=6尺,1里=180丈=1800尺=300步)
A.1250
B.1255
C.1230
D.1200

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]
在直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),在以O(shè)為極點x軸的非負半軸為極軸建立的極坐標系中,曲線C的極坐標方程為ρ=2.
(1)求直線l的普通方程和曲線C的直角坐標方程;
(2)若點Q是曲線C上的動點,求點Q到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,設(shè)為不同的兩點,直線的方程為,設(shè),其中均為實數(shù).下列四個說法中:

①存在實數(shù),使點在直線上;

②若,則過兩點的直線與直線重合;

③若,則直線經(jīng)過線段的中點;

④若,則點在直線的同側(cè),且直線與線段的延長線相交.

所有結(jié)論正確的說法的序號是______________

查看答案和解析>>

同步練習(xí)冊答案