傳說古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家經(jīng)常在沙灘上畫點(diǎn)或用小石子表示數(shù).他們研究過如圖所示的三角形數(shù):

將三角形數(shù)1,3,6,10,…記為數(shù)列{an},將可被5整除的三角形數(shù)按從小到大的順序組成一個(gè)新數(shù)列{bn},可以推測:
(1)b2012是數(shù)列{an}中的第    項(xiàng);
(2)b2k-1=    .(用k表示)
(1)5030 (2)
由以上規(guī)律可知三角形數(shù)1,3,6,10,…的一個(gè)通項(xiàng)公式為an=,寫出其若干項(xiàng)有:1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,…其中能被5整除的為10,15,45,55,105,120,…
故b1=a4,b2=a5,b3=a9,b4=a10,b5=a14,b6=a15,….
從而由上述規(guī)律可猜想:b2k=a5k= (k為正整數(shù)),
b2k-1=a5k-1==,
故b2012=b2×1006=a5×1006=a5030,
即b2012是數(shù)列{an}中的第5030項(xiàng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

我國是一個(gè)人口大國,隨著時(shí)間推移,老齡化現(xiàn)象越來越嚴(yán)重,為緩解社會和家庭壓力,決定采用養(yǎng)老儲備金制度.公民在就業(yè)的第一年交納養(yǎng)老儲備金,數(shù)目為a1,以后每年交納的數(shù)目均比上一年增加d(d>0),因此,歷年所交納的儲備金數(shù)目a1,a2,…,an是一個(gè)公差為d的等差數(shù)列.與此同時(shí),國家給予優(yōu)惠的計(jì)息政策,不僅采用固定利率,而且計(jì)算復(fù)利.這就是說,如果固定利率為r(r>0),那么,在第n年末,第一年所交納的儲備金就變?yōu)閍1(1+r)n-1,第二年所交納的儲備金就變?yōu)閍2(1+r)n-2,…,以Tn表示到第n年所累計(jì)的儲備金總額.
(1)寫出Tn與Tn-1(n≥2)的遞推關(guān)系式;
(2)求證:Tn=An+Bn,其中{An}是一個(gè)等比數(shù)列,{Bn}是一個(gè)等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若數(shù)列{an}滿足an+1=an+an+2(n∈N*),則稱數(shù)列{an}為“凸數(shù)列”.
(1)設(shè)數(shù)列{an}為“凸數(shù)列”,若a1=1,a2=-2,試寫出該數(shù)列的前6項(xiàng),并求出前6項(xiàng)之和;
(2)在“凸數(shù)列”{an}中,求證:an+3=-an,n∈N*
(3)設(shè)a1=a,a2=b,若數(shù)列{an}為“凸數(shù)列”,求數(shù)列前2011項(xiàng)和S2011.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

根據(jù)如圖所示的程序框圖,將輸出的x,y值依次分別記為x1,x2,…,xn,…,x2008;y1,y2,…,yn,…,y2008.

(1)求數(shù)列{xn}的通項(xiàng)公式.
(2)寫出y1,y2,y3,y4,由此猜想出數(shù)列{yn}的一個(gè)通項(xiàng)公式y(tǒng)n,并證明你的結(jié)論.
(3)求zn=x1y1+x2y2+…+xnyn(n∈N*,n≤2008).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

己知各項(xiàng)均不相等的等差數(shù)列{an}的前四項(xiàng)和S4=14,且a1,a3,a7成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Tn為數(shù)列的前n項(xiàng)和,若Tn¨對恒成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和滿足Sn>1,且6Sn=(an+1)(an+2),n∈N*.求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

正項(xiàng)數(shù)列{an}滿足-(2n-1)an-2n=0.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)令bn=,求數(shù)列{bn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,首項(xiàng)為a1,且,an,Sn成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若=,設(shè)cn=,求數(shù)列{cn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

等差數(shù)列{an}的公差不為零,首項(xiàng)a1=1,a2是a1和a5的等比中項(xiàng),則數(shù)列的前10項(xiàng)之和是(  )
A.90B.100C.145D.190

查看答案和解析>>

同步練習(xí)冊答案