若棱長(zhǎng)均為2的正三棱柱內(nèi)接于一個(gè)球,則該球的半徑為
21
3
21
3
分析:作出示意圖,可得外接球的球心是上下底面的中心的連線,結(jié)合等邊△ABC的性質(zhì)求出AO1的長(zhǎng),在Rt△O1OA利用勾股定理,可計(jì)算出外接球的半徑R.
解答:解:設(shè)正三棱柱上下底面的中心分別為O1、O2,則外接球的球心是O1O2的中點(diǎn)O
Rt△O1OA中,O1O=
1
2
×2=1,AO1=
2
3
×
3
2
×2=
2
3
3

∴AO=
AO12+O1O2
=
21
3
,即外接球的半徑R=
21
3

故答案為:
21
3
點(diǎn)評(píng):本題給出所有棱長(zhǎng)均相等的正三棱柱,求它的外接球半徑,著重考查了球內(nèi)接多面體的性質(zhì),考查了空間想象能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(04年上海卷)(16分)

如圖,P-ABC是底面邊長(zhǎng)為1的正三棱錐,D、E、F分別為棱長(zhǎng)PA、PB、PC上的點(diǎn), 截面DEF∥底面ABC, 且棱臺(tái)DEF-ABC與棱錐P-ABC的棱長(zhǎng)和相等.(棱長(zhǎng)和是指多面體中所有棱的長(zhǎng)度之和)

(1)     證明:P-ABC為正四面體;

(2)     若PD=PA, 求二面角D-BC-A的大;(結(jié)果用反三角函數(shù)值表示)

(3)     設(shè)棱臺(tái)DEF-ABC的體積為V, 是否存在體積為V且各棱長(zhǎng)均相等的直

平行六面體,使得它與棱臺(tái)DEF-ABC有相同的棱長(zhǎng)和? 若存在,請(qǐng)具體構(gòu)造

出這樣的一個(gè)直平行六面體,并給出證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆廣東實(shí)驗(yàn)中學(xué)高二上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)

如圖,P-ABC是底面邊長(zhǎng)為1的正三棱錐,D、E、F分別為棱長(zhǎng)PA、PB、PC上的點(diǎn), 截面DEF∥底面ABC, 且棱臺(tái)DEF-ABC與棱錐P-ABC的棱長(zhǎng)和相等.(棱長(zhǎng)和是指多面體中所有棱的長(zhǎng)度之和)

(1)求證:P-ABC為正四面體;

(2)棱PA上是否存在一點(diǎn)M,使得BM與面ABC所成的角為45°?若存在,求出點(diǎn)M的位置;若不存在,請(qǐng)說(shuō)明理由。

(3)設(shè)棱臺(tái)DEF-ABC的體積為V=, 是否存在體積為V且各棱長(zhǎng)均相等的平行六面體,使得它與棱臺(tái)DEF-ABC有相同的棱長(zhǎng)和,并且該平行六面體的一條側(cè)棱與底面兩條棱所成的角均為60°? 若存在,請(qǐng)具體構(gòu)造出這樣的一個(gè)平行六面體,并給出證明;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,P-ABC是底面邊長(zhǎng)為1的正三棱錐,D、E、F分別為棱長(zhǎng)PA、PB、PC上的點(diǎn), 截面DEF∥底面ABC, 且棱臺(tái)DEF-ABC與棱錐P-ABC的棱長(zhǎng)和相等.(棱長(zhǎng)和是指多面體中所有棱的長(zhǎng)度之和)

(1)證明:P-ABC為正四面體;

(2)若PD=PA, 求二面角D-BC-A的大;(結(jié)果用反三角函數(shù)值表示)

(3)設(shè)棱臺(tái)DEF-ABC的體積為V, 是否存在體積為V且各棱長(zhǎng)均相等的直平行六面體,

使得它與棱臺(tái)DEF-ABC有相同的棱長(zhǎng)和? 若存在,請(qǐng)具體構(gòu)造出這樣的一個(gè)直平行六面體,并給出證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河南省洛陽(yáng)一高高三(下)數(shù)學(xué)測(cè)試卷(解析版) 題型:填空題

若棱長(zhǎng)均為2的正三棱柱內(nèi)接于一個(gè)球,則該球的半徑為   

查看答案和解析>>

同步練習(xí)冊(cè)答案