已知函數(shù)
(1)若,試確定函數(shù)的單調(diào)區(qū)間;
(2)若且對任意,恒成立,試確定實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù),求證:
(1)遞增區(qū)間;遞減區(qū)間;(2);(3)詳見解析
解析試題分析:(1)定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/42/4/1vums3.png" style="vertical-align:middle;" />,求并解不等式得單調(diào)遞增區(qū)間;解不等式,得單調(diào)遞減區(qū)間;(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a8/3/1j6o34.png" style="vertical-align:middle;" />是偶函數(shù),故不等式對恒成立,只需求函數(shù)()的最小值即可,先求的根,得,當(dāng)時,將定義域分段并分別考慮兩側(cè)導(dǎo)數(shù)符號,進(jìn)而求最小值;當(dāng)時,函數(shù)單調(diào),利用單調(diào)性求最小值;(3),觀察所要證明不等式,左邊可看成,
,……這n對的積,只需證明每對的積大于即可.
試題解析:(1),令,解得,當(dāng)時,,在單調(diào)遞增;當(dāng)時,,在單調(diào)遞減 .
(2)為偶函數(shù),恒成立等價于對恒成立.
當(dāng)時,,令,解得
①當(dāng),即時,在減,在增
,解得,
②當(dāng),即時,,在上單調(diào)遞增,
,符合, 綜上,
(3)
考點(diǎn):1、導(dǎo)數(shù)在單調(diào)性上的應(yīng)用;2、導(dǎo)數(shù)在極值和最值方面的應(yīng)用;3、不等式放縮法證明.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
某連鎖分店銷售某種商品,每件商品的成本為元,并且每件商品需向總店交元的管理費(fèi),預(yù)計當(dāng)每件商品的售價為元時,一年的銷售量為萬件.
(1)求該連鎖分店一年的利潤(萬元)與每件商品的售價的函數(shù)關(guān)系式;
(2)當(dāng)每件商品的售價為多少元時,該連鎖分店一年的利潤最大,并求出的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù) (為實(shí)常數(shù)) .
(1)當(dāng)時,求函數(shù)在上的最大值及相應(yīng)的值;
(2)當(dāng)時,討論方程根的個數(shù).
(3)若,且對任意的,都有,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),()
(1)若函數(shù)存在極值點(diǎn),求實(shí)數(shù)b的取值范圍;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)且時,令,(),()為曲線y=上的兩動點(diǎn),O為坐標(biāo)原點(diǎn),能否使得是以O(shè)為直角頂點(diǎn)的直角三角形,且斜邊中點(diǎn)在y軸上?請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ax4lnx+bx4﹣c(x>0)在x=1處取得極值﹣3﹣c,其中a,b,c為常數(shù).
(1)試確定a,b的值;
(2)討論函數(shù)f(x)的單調(diào)區(qū)間;
(3)若對任意x>0,不等式f(x)≥﹣2c2恒成立,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),恒過定點(diǎn).
(1)求實(shí)數(shù);
(2)在(1)的條件下,將函數(shù)的圖象向下平移1個單位,再向左平移個單位后得到函數(shù),設(shè)函數(shù)的反函數(shù)為,直接寫出的解析式;
(3)對于定義在上的函數(shù),若在其定義域內(nèi),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ax4lnx+bx4﹣c(x>0)在x=1處取得極值﹣3﹣c,其中a,b,c為常數(shù).
(1)試確定a,b的值;
(2)討論函數(shù)f(x)的單調(diào)區(qū)間;
(3)若對任意x>0,不等式f(x)≥﹣2c2恒成立,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)().
(1)求的單調(diào)區(qū)間;
⑵如果是曲線上的任意一點(diǎn),若以為切點(diǎn)的切線的斜率恒成立,求實(shí)數(shù)的最小值;
⑶討論關(guān)于的方程的實(shí)根情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)若1是函數(shù)的一個零點(diǎn),求函數(shù)的解析表達(dá)式;
(2)試討論函數(shù)的零點(diǎn)的個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com