【題目】如圖△ABC是等腰三角形,BA=BC,DC⊥平面ABC,AE∥DC,若AC=2且BE⊥AD,則( )
A.AB+BC有最大值
B.AB+BC有最小值
C.AE+DC有最大值
D.AE+DC有最小值
【答案】D
【解析】解:取AC的中點O,連接OB,OE,則OB⊥AC,
∵DC⊥平面ABC,∴DC⊥OB,
∵DC∩AC=C,
∴OB⊥平面ADC,
∴OB⊥AD,
∵BE⊥AD,OB∩BE=B,
∴AD⊥平面BOE,
∴AD⊥OE,
∴∠AEO=∠CAD,
∴ = ,
∴AE= ,
∴AE+CD=CD+ ≥2 ,當(dāng)且僅當(dāng)CD= 時,AE+DC有最小值,
故選D.
【考點精析】本題主要考查了直線與平面垂直的判定的相關(guān)知識點,需要掌握一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分)
某電視臺播放甲、乙兩套連續(xù)劇,每次播放連續(xù)劇時,需要播放廣告.已知每次播放甲、乙兩套連續(xù)劇時,連續(xù)劇播放時長、廣告播放時長、收視人次如下表所示:
連續(xù)劇播放時長(分鐘) | 廣告播放時長(分鐘) | 收視人次(萬) | |
甲 | 70 | 5 | 60 |
乙 | 60 | 5 | 25 |
已知電視臺每周安排甲、乙連續(xù)劇的總播放時間不多于600分鐘,廣告的總播放時間不少于30分鐘,且甲連續(xù)劇播放的次數(shù)不多于乙連續(xù)劇播放次數(shù)的2倍.分別用,表示每周計劃播出的甲、乙兩套連續(xù)劇的次數(shù).
(I)用,列出滿足題目條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(II)問電視臺每周播出甲、乙兩套連續(xù)劇各多少次,才能使收視人次最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用簡單隨機(jī)抽樣方法從含有6個個體的總體中,抽取一個容量為2的樣本,某一個體a“第一次被抽到的概率”、“第二次被抽到的概率”、“在整個抽樣過程中被抽到”的概率分別是
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面給出四個命題的表述: ①直線(3+m)x+4y﹣3+3m=0(m∈R)恒過定點(﹣3,3);
②線段AB的端點B的坐標(biāo)是(3,4),A在圓x2+y2=4上運動,則線段AB的中點M的軌跡方程 +(y﹣2)2=1
③已知M={(x,y)|y= },N={(x,y)|y=x+b},若M∩N≠,則b∈[﹣ , ];
④已知圓C:(x﹣b)2+(y﹣c)2=a2(a>0,b>0,c>0)與x軸相交,與y軸相離,則直線ax+by+c=0與直線x+y+1=0的交點在第二象限.
其中表述正確的是( (填上所有正確結(jié)論對應(yīng)的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且a1=0,nan+1=Sn+n(n+1).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足an+log3n=log3bn , 求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是等比數(shù)列,{bn}是等差數(shù)列,且a1=b1=1,a1+a2=b4 , b1+b2=a2 .
(1)求{an}與{bn}的通項公式;
(2)記數(shù)列{an+bn}的前n項和為Tn , 求Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)當(dāng)時,求函數(shù)的單調(diào)增區(qū)間;
(2)設(shè)函數(shù), .若函數(shù)的最小值是,求的值;
(3)若函數(shù), 的定義域都是,對于函數(shù)的圖象上的任意一點,在函數(shù)的圖象上都存在一點,使得,其中是自然對數(shù)的底數(shù), 為坐標(biāo)原點.求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com