17.不透明的箱子里裝有出顏色外其他均相同的編號為a1,a2,a3的3個白球和編號為b1,b2的2個黑球,從中任意摸出2個球.
(1)寫出所有不同的結(jié)果;
(2)求恰好摸出1個白球和1個黑球的概率;
(3)求至少摸出一個白球的概率.

分析 (1)利用列舉法能寫出所有的結(jié)果.
(2)記“恰好摸出1個白球和1個黑球”為事件A,利用列舉法能求出恰好摸出1個白球和1個黑球的概率.
(3)記“至少摸出一個白球”為事件B,利用列舉法能求出至少摸出一個白球的概率.

解答 解:(1)所有的結(jié)果為:
a1a2,a1a3,a1b1,a1b2,a2a3,a2b1,a2b2,a3b1,a3b2,b1b2.…(2分)
(2)記“恰好摸出1個白球和1個黑球”為事件A,
則事件A包含的基本事件為a1b1,a1b2,a2b1,a2b2,a3b1,a3b2,共6個基本事件,
所以P(A)=$\frac{6}{10}=0.6$,即恰好摸出1個白球和1個黑球的概率為0.6.…(7分)
(3)記“至少摸出一個白球”為事件B,
則事件B包含的基本事件為a1b1,a1b2,a2b1,a2b2,a3b1,a3b2,a1a2,a1a3,a2a3,共9個基本事件,
所以P(B)=$\frac{9}{10}=0.9$,
即至少摸出一個白球的概率為0.9.…(12分)

點評 本題考查概率的求法,是基礎(chǔ)題,解題時要認真審題,注意列舉法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知等差數(shù)列{an}滿足a3•a7=-12,a4+a6=-4,求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若方程x2-mx+m-1=0有兩根,其中一根大于2一根小于2的充要條件是m>3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,且滿足2bcosC=2a-c.
(Ⅰ)求B;            
(Ⅱ)若△ABC的面積為$\sqrt{3}$,b=2求a,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.用秦九韶算法計算多項式f(x)=3x4+x2+2x+4,當x=10時的值的過程中,v2的值為312.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知鈍角α滿足cosα=-$\frac{3}{5}$,則tan(α+$\frac{π}{4}$)的值為$-\frac{1}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.下列有關(guān)數(shù)列的說法:
①?等差數(shù)列{an}的各項都加3,構(gòu)成的新數(shù)列仍是等差數(shù)列;
②?數(shù)列{an}從第二項起,每一項與前一項的差都是常數(shù),則數(shù)列{an}是等差數(shù)列;
③?等差數(shù)列{an}中,若a2>a1,則數(shù)列{an}一定是遞增數(shù)列;
④數(shù)列:$\sqrt{2}$,$\sqrt{3}$,$\sqrt{4}$,$\sqrt{5}$,$\sqrt{6}$是公差為1的等差數(shù)列;
其中正確的是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.下列結(jié)論正確的是①②④
①在某項測量中,測量結(jié)果ξ服從正態(tài)分布N(1,σ2)(σ>0).若ξ在(0,1)內(nèi)取值的概率為0.35,則ξ在(0,2)內(nèi)取值的概率為0.7;
②以模型y=cekx去擬合一組數(shù)據(jù)時,為了求出回歸方程,設(shè)z=lny,其變換后得到線性回歸方程z=0.3x+4,則c=e4;
③已知命題“若函數(shù)f(x)=ex-mx在(0,+∞)上是增函數(shù),則m≤1”的逆否命題是“若m>1,則函數(shù)f(x)=ex-mx在(0,+∞)上是減函數(shù)”是真命題;
④設(shè)常數(shù)a,b∈R,則不等式ax2-(a+b-1)x+b>0對?x>1恒成立的充要條件是a≥b-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知指數(shù)函數(shù)y=g(x)滿足:g(3)=8,定義域為R的函數(shù)f(x)=$\frac{n-g(x)}{2+2g(x)}$是奇函數(shù).
(1)確定y=f(x)和y=g(x)的解析式;
(2)若對任意的x∈[1,4],不等式f(2x-3)+f(x-k)>0恒成立,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案