在正方體ABCD-A1B1C1D1中,BD1與AC所成的角是( 。
A、60°B、30°
C、90°D、45°
考點:異面直線及其所成的角
專題:空間角
分析:由已知得AC⊥BD,AC⊥DD1,從而AC⊥平面DBB1D1,由此能求出BD1與AC所成的角的大。
解答: 解:在正方體ABCD-A1B1C1D1中,
∵ABCD是正方形,∴AC⊥BD,
∵DD1⊥平面ABCD,∴AC⊥DD1,
∵BD∩DD1=D,
∴AC⊥平面DBB1D1,
∵BD1?平面DBB1D1,
∴AC⊥BD1
∴BD1與AC所成的角是90°.
故選:C.
點評:本題考查異面直線所成角的大小的求法,是基礎題,解題時要注意空間思維能力的培養(yǎng).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若復數(shù)(1-i)(2i+m)是純虛數(shù),則實數(shù)m的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
3
sin(π+x)•sin(
2
-x)-cos2x,
(1)求f(x)的最小正周期;
(2)若α∈[-
π
2
,0],f(
1
2
α+
π
3
)=
1
10
,求sin(2α-
π
4
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的兩焦點為F1,F(xiàn)2.若橢圓上存在點Q,使∠F1QF2=120°,橢圓離心率e的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知斜三棱柱ABC-A1B1C1 的側面 A1ACC1與底面ABC垂直,∠ABC=90°,BC=2,AC=2
3
,且AA1⊥A1C,AA1=A1C.
(1)求側棱A1A與底面ABC所成角的大。
(2)求側面A1ABB1與底面ABC所成二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了解學生身高情況,某校以10%的比例對全校700名學生按性別進行抽樣檢查,測得身高情況的頻率分布直方圖如下:

已知樣本中身高在[150,155)cm的女生有1人.
(Ⅰ)求出樣本中該校男生的人數(shù)和女生的人數(shù);
(Ⅱ)估計該校學生身高在170~190cm之間的概率;
(Ⅲ)從樣本中身高在185~190cm之間的男生和樣本中身高在170~180cm之間的女生中隨機抽取3人,記被抽取的3人中的女生人數(shù)為X.求隨機變量X的分布列和數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
x
2
+sinx的單調(diào)區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

室內(nèi)有直尺,無論怎樣放置,在地面上總有這樣的直線,它與直尺所在的直線
 
(從“異面”、“相交”、“平行”、“垂直”中選填一個)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知偶函數(shù)f(x)=ax2-bx+2(a≠0)的一個零點為1.
(1)求a,b的值;
(2)求函數(shù)y=f(x-1)在[0,3]上的值域.

查看答案和解析>>

同步練習冊答案