若向量數(shù)學(xué)公式=(1,sinx),數(shù)學(xué)公式=(2,cosx),則函數(shù)f(x)=數(shù)學(xué)公式數(shù)學(xué)公式的最小正周期為_(kāi)_______.

π
分析:利用向量數(shù)量積的坐標(biāo)公式和二倍角的正弦公式化簡(jiǎn),得f(x)=2+sin2x,再由三角函數(shù)的周期公式,可得則函數(shù)
f(x)的最小正周期.
解答:∵向量=(1,sinx),=(2,cosx),
∴f(x)==2+sinxcosx=2+sin2x
由此可得函數(shù)的周期為T(mén)=
故答案為:π
點(diǎn)評(píng):本題給出向量數(shù)量積對(duì)應(yīng)的函數(shù),求函數(shù)的最小正周期,著重考查了向量數(shù)量積的坐標(biāo)公式、二倍角的正弦公式和三角函數(shù)的周期等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若向量
a
=(
3
cosωx,sinωx),
b
=(sinωx,0)
,其中ω>0,記函數(shù)f(x)=(
a
+
b
)•
b
-
1
2
,若函數(shù)f(x)的圖象與直線y=m(m為常數(shù))相切,并且切點(diǎn)的橫坐標(biāo)依次成公差為π的等差數(shù)列.
(1)求f(x)的表達(dá)式及m的值;
(2)將函數(shù)y=f(x)的圖象向左平移
π
12
,得到y(tǒng)=g(x)的圖象,當(dāng)x∈(
π
2
,
4
)
時(shí),g(x)=cosα的交點(diǎn)橫坐標(biāo)成等比數(shù)列,求鈍角α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(2sinx,0),
n
=(sinx+cosx,sinx-cosx),且f(x)=
m
n

(1)求f(x)的最小正周期和最小值;
(2)若f(α)=1,sinβ=
1
3
,0<α<
π
2
<β<π,求cos(2α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•順河區(qū)一模)設(shè)函數(shù)f(x)=sin2x-sin(2x-
π
2
)

(I)求函數(shù)f(x)的最小正周期和最大值;
(Ⅱ)△ABC的內(nèi)角A.B、C的對(duì)邊分別為a、b、c,c=3,f(
C
2
)=
1
4
,若向量
m
=(1,sinA)與
n
=(2,sinB)共線,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且c=3,C=
π
3
,若向量
m
=(1,sin A)與
n
=(2,sin B)共線.
(1)求a,b的值;
(2)求△ABC的面積和外接圓的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆四川省高一下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=sin xcos x-cos2xx∈R.

(1)求函數(shù)f(x)的最小值和最小正周期;

(2)已知△ABC內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且c=3,f(C)=0,若向量m=(1,sin A)與n=(2,sin B)共線,求a,b的值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案