【答案】
分析:解法一:(1)要計算
的值,我們可在平面OAB內(nèi)作ON⊥OA交AB于N,連接NC.則根據(jù)已知條件結(jié)合平面幾何中三角形的性質(zhì)我們易得NB=ON=AQ,則易求出
的值.
(2)要求二面角O-AC-B的平面角的余弦值,我們可連接PN,PO,根據(jù)三垂線定理,易得∠OPN為二面角O-AC-B的平面角,然后解三角形OPN得到二面角O-AC-B的平面角的余弦值.
解法二:取O為坐標(biāo)原點,分別以O(shè)A,OC所在的直線為x軸,z軸,建立空間直角坐標(biāo)系O-xyz,我們易根據(jù)已知給出四面體中各點的坐標(biāo),利用向量法進(jìn)行求解,(1)由A、Q、B三點共線,我們可設(shè)
,然后根據(jù)已知條件,構(gòu)造關(guān)于λ的方程,解方程即可得到λ的值,即
的值;
(2)要求二面角O-AC-B的平面角的余弦值,我們可以分別求出平面OAC及平面ABC的法向量,然后根據(jù)求二面角O-AC-B的平面角的余弦值等于兩個法向量夾角余弦的絕對值進(jìn)行求解.
解答:解:法一:
(Ⅰ)在平面OAB內(nèi)作ON⊥OA交AB于N,連接NC.
又OA⊥OC,∴OA⊥平面ONC
∵NC?平面ONC,
∴OA⊥NC.
取Q為AN的中點,則PQ∥NC.
∴PQ⊥OA
在等腰△AOB中,∠AOB=120°,
∴∠OAB=∠OBA=30°
在Rt△AON中,∠OAN=30°,
∴
在△ONB中,∠NOB=120°-90°=30°=∠NBO,
∴NB=ON=AQ.
∴
解:(Ⅱ)連接PN,PO,
由OC⊥OA,OC⊥OB知:OC⊥平面OAB.
又ON?OAB,
∴OC⊥ON
又由ON⊥OA,ON⊥平面AOC.
∴OP是NP在平面AOC內(nèi)的射影.
在等腰Rt△COA中,P為AC的中點,
∴AC⊥OP
根據(jù)三垂線定理,知:
∴AC⊥NP
∴∠OPN為二面角O-AC-B的平面角
在等腰Rt△COA中,OC=OA=1,∴
在Rt△AON中,
,
∴在Rt△PON中,
.
∴
解法二:
(I)取O為坐標(biāo)原點,分別以O(shè)A,OC所在的直線為x軸,z軸,
建立空間直角坐標(biāo)系O-xyz(如圖所示)
則
∵P為AC中點,∴
設(shè)
,∵
.
∴
,
∴
.
∵
,
∴
即
,
.
所以存在點
使得PQ⊥OA且
.
(Ⅱ)記平面ABC的法向量為
=(n
1,n
2,n
3),則由
,
,且
,
得
,故可取
又平面OAC的法向量為
=(0,1,0).
∴cos<
,
>=
.
兩面角O-AC-B的平面角是銳角,記為θ,則
點評:空間兩條直線夾角的余弦值等于他們方向向量夾角余弦值的絕對值;
空間直線與平面夾角的余弦值等于直線的方向向量與平面的法向量夾角的正弦值;
空間銳二面角的余弦值等于他的兩個半平面方向向量夾角余弦值的絕對值;