分析 (Ⅰ)函數(shù)f(x)=x2+bx-1的圖象是開口朝上,且以直線x=-\frac{2}為對(duì)稱軸的拋物線,若函數(shù)y=f(x)在[1,+∞)上單調(diào),則-2≤1,解處b的取值范圍;
(Ⅱ)若函數(shù)y=|f(x)|-2有四個(gè)零點(diǎn),則1+24<2,解得b的取值范圍;
(Ⅲ)若函數(shù)y=|f(x)|在[0,|b|)上的最大值為g(b),結(jié)合二次函數(shù)的圖象和性質(zhì)分類討論,可得答案.
解答 解:(Ⅰ)∵函數(shù)f(x)=x2+bx-1的圖象是開口朝上,且以直線x=-\frac{2}為對(duì)稱軸的拋物線,…(2分)
∵y=f(x)在[1,+∞)上單調(diào),
∴-\frac{2}≤1,
即:b≥-2….(5分)
(Ⅱ)函數(shù)y=|f(x)|-2有四個(gè)零點(diǎn),即函數(shù)y=|f(x)|與直線y=2有四個(gè)交點(diǎn),
∵f(x)=x2+bx−1=(x+2)2−1−b24的最小值為−1−24
∴只需1+24<2 即:b∈(-1,1)….(10分)
(Ⅲ)①當(dāng)b>0時(shí),函數(shù)y=|f(x)|在[0,b)上單調(diào)增,
g(b)=max{|f(0)|,|f(b)|}=max{1,|2b2-1|}={1,0<b<122−1,b≥1…(12分)
②當(dāng)b<0時(shí),|f(0)|=f(|b|)=1,f(−2)=−1−b24
又|f(−2)|=1+24>1,所以g(b)=1+24…(14分)
綜上所述,g(b)={22−1,b≥11,0<b<11+24,b<0;…(15分)
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | 2 | C. | -2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?∈R,均有x2+sinx+1≥0 | B. | ?x∈R,使得x2+sinx+1<0 | ||
C. | ?x∈R,使得x2+sinx+1≥0 | D. | ?x∈R,均有x2+sinx+1>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向左平移\frac{π}{6}個(gè)單位 | B. | 向右平移\frac{π}{6}個(gè)單位 | ||
C. | 向左平移\frac{π}{12}個(gè)單位 | D. | 向右平移\frac{π}{12}個(gè)單位 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com