若方程sin2x+sinx-1-a=0在(0,
π
2
)上有解,則a的取值范圍
 
考點(diǎn):函數(shù)的零點(diǎn)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由x的范圍得到sinx的范圍,把方程轉(zhuǎn)化為t2+t-1=a,令f(t)=t2+t-1求出其值域得答案.
解答: 解:設(shè)t=sinx,
∵x∈(0,
π
2
),則t∈(0,1),
即方程sin2x+sinx-1-a=0化為t2+t-1=a,
方程sin2x+sinx-1-a=0在(0,
π
2
)上有解,
即t2+t-1=a在(0,1)上有解.
令f(t)=t2+t-1,則f(t)=t2+t-1=(t+
1
2
)2-
5
4
∈(-1,1),
則a的取值范圍是(-1,1).
故答案為:(-1,1).
點(diǎn)評:本題考查了函數(shù)的零點(diǎn),考查了數(shù)學(xué)轉(zhuǎn)化思想方法,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}共有2n項(xiàng),它的全部各項(xiàng)和是奇數(shù)項(xiàng)和的3倍,則公比q=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,M,N分別為AC,PC上的點(diǎn),且MN∥平面PAD,則( 。
A、MN∥PD
B、MN∥PA
C、MN∥AD
D、以上均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù),g(x)=lnx+ax2+bx,函數(shù)g(x)的圖象在點(diǎn)(1,g(1))處的切線平行于x軸.
(Ⅰ)確定a與b的關(guān)系;
(Ⅱ)試討論函數(shù)g(x)的單調(diào)性;
(Ⅲ)證明:對任意n∈N*,都有l(wèi)n(1+n)>
1
22
+
1
32
+
1
42
…+
n-1
n2
成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sinx+cos2x的圖象為(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-
1
x
,試判斷f(x)的奇偶性及在(0,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

銳角△ABC的外接圓⊙O,且已知AB=4,∠C=45°,求外接圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程mx2+(2m+3)x+1-m=0有一個(gè)正根和一個(gè)負(fù)根的充要條件是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于定義在R上的函數(shù)f(x),有下述四個(gè)命題,其中正確命題序號為
 

①若函數(shù)f(x)是奇函數(shù),則f(x-1)的圖象關(guān)于點(diǎn)A(1,0)對稱;
②若對x∈R,有f(x+1)=f(x-1),則y=f(x)直線x=1對稱;
③若函數(shù)f(x-1)關(guān)于直線x=1對稱,則函數(shù)f(x)為偶函數(shù);
④函數(shù)f(x+1)與函數(shù)f(1-x)直線x=1對稱.

查看答案和解析>>

同步練習(xí)冊答案