11.直線y=kx+3與圓(x-3)2+(y-2)2=4相交于M、N兩點,若$|MN|=2\sqrt{3}$,則k等于(  )
A.0B.$-\frac{2}{3}$C.$-\frac{2}{3}或0$D.$-\frac{3}{4}或0$

分析 求出圓的圓心與半徑,求出弦心距,再利用弦長公式求得k的值.

解答 解:圓(x-3)2+(y-2)2=4的圓心為(3,2),半徑為2,
當|MN|=2$\sqrt{3}$時,
圓心(3,2)到直線y=kx+3的距離為d=$\frac{|3k-2+3|}{\sqrt{{k}^{2}+1}}$=1,
求得k=-$\frac{3}{4}$或0,
故選D.

點評 本題主要考查圓的標準方程,直線和圓相交的性質,點到直線的距離公式,弦長公式的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.已知函數(shù)y=f (x)是定義在R上的偶函數(shù),當x≤0時,y=f (x)是減函數(shù),若|x1|<|x2|,則( 。
A.f (x1)-f (x2)<0B.f (x1)-f (x2)>0C.f (x1)+f (x2)<0D.f (x1)+f (x2)>0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.函數(shù)y=x2-2x的定義域為$[{-\frac{1}{3},\frac{11}{5}}]$,值域為[-1,$\frac{7}{9}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)在其定義域(0,+∞),f(2)=1,且對任意正數(shù)x,y都有f(xy)=f(x)+f(y)成立.
(1)求f(8)的值;
(2)若f(x)是定義域內的增函數(shù),解關于x不等式f(x)+f(x-2)≤3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2^x},x≤1\\{log_3}x,x>1\end{array}$,則f(3)+f(0)=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知函數(shù)$f(x)=\frac{{-{2^x}+a}}{{{2^{x+1}}+2}}$(a為實常數(shù))是奇函數(shù),則a=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.${(2\frac{3}{5})^0}+{2^{-2}}×{(2\frac{1}{4})^{-\frac{1}{2}}}-{(0.01)^{\frac{1}{2}}}$=( 。
A.$\frac{16}{15}$B.$3\frac{17}{30}$C.$-8\frac{5}{6}$D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.向量$\overrightarrow a=(1,1)$,且$\overrightarrow a$與$\overrightarrow a+\overrightarrow b$的方向相反,則$\overrightarrow a•\overrightarrow b$的取值范圍是(-∞,-2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.設二次函數(shù)f(x)=Ax2+Bx+c,給定m、n(m<n),且滿足A2[(m+n)2+m2n2]+2A[B(m+n)-Cmn]+B2+C2=0
①解不等式f(x)>0;
②是否存在一個實數(shù)t,使當t∈(m+t,n-t)時,f(x)<0?若不存在,說出理由;若存在,指出t的取值范圍.

查看答案和解析>>

同步練習冊答案