【題目】在正方體中,點(diǎn),分別為的中點(diǎn),則下列說法正確的是______.

平面平面

平面平面

【答案】

【解析】

①②③錯(cuò)誤,采用反證,假設(shè)正確,再根據(jù)線面垂直,線面平行的性質(zhì)推出矛盾;④先證明,再對稱考慮有,最后通過線面垂直的判定推出結(jié)論.

①連接,有,,故平面.假設(shè)平面,則有,而,故平面,于是,矛盾,所以此命題錯(cuò)誤.

②設(shè)交于,則,,故四邊形是平行四邊形,所以有.假設(shè)平面,因在平面上,故也在平面上,而直線直線和為異面直線,矛盾,所以此命題錯(cuò)誤.

③假設(shè)平面,則必有,而又有,故平面.于是有,矛盾,所以此命題錯(cuò)誤.

④連接,則有,又因?yàn)?/span>,所以有,故.的中點(diǎn),由正方形性質(zhì),,三點(diǎn)共線.所以平面即是平面,同理設(shè)的中點(diǎn)為,則,于是有平面,故平面.

故本題的答案為:④

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正四棱錐中,,,分別是,的中點(diǎn),動(dòng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),下列四個(gè)結(jié)論中恒成立的為( .

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】潮汐是發(fā)生在沿海地區(qū)的一種自然現(xiàn)象,其形成是海水受日月的引力.潮是指海水在一定的時(shí)候發(fā)生漲落的現(xiàn)象.一般來說,早潮叫潮,晚潮叫汐.某觀測站通過長時(shí)間的觀測,其發(fā)現(xiàn)潮汐的漲落規(guī)律和函數(shù)圖象基本一致且周期為,其中為時(shí)間,為水深.當(dāng)時(shí),海水上漲至最高5.

1)作出函數(shù)內(nèi)的圖象,并求出潮汐漲落的頻率和初相;

2)求海水水深持續(xù)加大的時(shí)間區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】表示一位騎自行車和一位騎摩托車的旅行者在相距80 km的甲、乙兩城間從甲城到乙城所行駛的路程與時(shí)間之間的函數(shù)關(guān)系,有人根據(jù)函數(shù)圖象,提出了關(guān)于這兩個(gè)旅行者的如下信息:

①騎自行車者比騎摩托車者早出發(fā)3 h,晚到1 h

②騎自行車者是變速運(yùn)動(dòng),騎摩托車者是勻速運(yùn)動(dòng);

③騎摩托車者在出發(fā)1.5 h后追上了騎自行車者;

④騎摩托車者在出發(fā)1.5 h后與騎自行車者速度一樣.

其中,正確信息的序號(hào)是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若曲線與曲線在它們的某個(gè)交點(diǎn)處具有公共切線,求的值;

(Ⅱ)若存在實(shí)數(shù)使不等式的解集為,求實(shí)數(shù)的取值范圍

(Ⅲ)若方程有三個(gè)不同的解,且它們可以構(gòu)成等差數(shù)列,寫出實(shí)數(shù)的值(只需寫出結(jié)果).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形,平面,分別是線段的中點(diǎn),.

(1)證明:平面;

(2)設(shè)點(diǎn)是線段的中點(diǎn),求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知分別為雙曲線的左右焦點(diǎn),左右頂點(diǎn)為、是雙曲線上任意一點(diǎn),則分別以線段、為直徑的兩圓的位置關(guān)系為( )

A. 相交B. 相切C. 相離D. 以上情況均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直角的三邊長,滿足.

Ⅰ)在之間插入個(gè)數(shù),使這個(gè)數(shù)構(gòu)成以為首項(xiàng)的等差數(shù)列,且它們的和為,求斜邊的最小值;

Ⅱ)已知均為正整數(shù),成等差數(shù)列,將滿足條件的三角形的面積從小到大排成一列,,求滿足不等式的所有的值;

Ⅲ)已知成等比數(shù)列,若數(shù)列滿足,證明:數(shù)列中的任意連續(xù)三項(xiàng)為邊長均可以構(gòu)成直角三角形,是正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的參數(shù)方程為,其中為參數(shù),且在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系.

1)求曲線的極坐標(biāo)方程;

2)設(shè)是曲線上的一點(diǎn),直線被曲線截得的弦長為,求點(diǎn)的極坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案