若關(guān)于x的方程有解,則m的取值范圍是(   )
A.B.C.D.
C
原方程可化為;解得
故選C
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)是定義在上的奇函數(shù),且當(dāng)時(shí),. 若對(duì)任意的,不等式恒成立,則實(shí)數(shù)的取值范圍是  ( ▲ )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題共3小題,滿分18分。第1小題滿分4分,第2小題滿分7分,第3小題7分)
對(duì)定義在上,并且同時(shí)滿足以下兩個(gè)條件的函數(shù)稱為函數(shù).
① 對(duì)任意的,總有;
② 當(dāng)時(shí),總有成立.
已知函數(shù)是定義在上的函數(shù).
(1)試問(wèn)函數(shù)是否為函數(shù)?并說(shuō)明理由;
(2)若函數(shù)函數(shù),求實(shí)數(shù)的值;
(3)在(2)的條件下,是否存在實(shí)數(shù),使方程恰有兩解?若存在,求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)已知函數(shù);
(1)若,求的值域;(2)在(1)的條件下,判斷的單調(diào)性;(3)當(dāng)時(shí)有意義求實(shí)的范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)的導(dǎo)函數(shù),數(shù)列{}的前n項(xiàng)和為,點(diǎn)(n,)均在函數(shù)的圖象上.若=+3)
⑴當(dāng)n≥2時(shí),試比較的大;
⑵記試證

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)某工廠要建造一個(gè)長(zhǎng)方體形無(wú)蓋貯水池,其容積為4800m, 深為3 m。如果池底每平方米的造價(jià)為150元,池壁每平方米的造價(jià)為120元,怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低總造價(jià)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分13分)為了提高產(chǎn)品的年產(chǎn)量,某企業(yè)擬在2010年進(jìn)行技術(shù)改革.經(jīng)調(diào)查測(cè)算,產(chǎn)品當(dāng)年的產(chǎn)量x萬(wàn)件與投入技術(shù)改革費(fèi)用m萬(wàn)元(m≥0)滿足x=3-(k為常數(shù)).如果不搞技術(shù)改革,則該產(chǎn)品當(dāng)年的產(chǎn)量只能是1萬(wàn)件.已知2010年生產(chǎn)該產(chǎn)品的固定投入為8萬(wàn)元,每生產(chǎn)1萬(wàn)件該產(chǎn)品需要再投入16萬(wàn)元.由于市場(chǎng)行情較好,廠家生產(chǎn)的產(chǎn)品均能銷(xiāo)售出去.廠家將每件產(chǎn)品的銷(xiāo)售價(jià)格定為每件產(chǎn)品生產(chǎn)成本的1.5倍(生產(chǎn)成本包括固定投入和再投入兩部分資金).
(1)將2010年該產(chǎn)品的利潤(rùn)y萬(wàn)元(利潤(rùn)=銷(xiāo)售金額-生產(chǎn)成本-技術(shù)改革費(fèi)用)表示為技術(shù)改革費(fèi)用m萬(wàn)元的函數(shù);
(2)該企業(yè)2010年的技術(shù)改革費(fèi)用投入多少萬(wàn)元時(shí),廠家的利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知等于           (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

的單調(diào)遞增區(qū)間是

查看答案和解析>>

同步練習(xí)冊(cè)答案