已知曲線C:f(x)=x2,C上的點(diǎn)A0,An的橫坐標(biāo)分別為1和an(n∈N*),且a1=5,數(shù)列{xn}滿足,設(shè)區(qū)間Dn=[1,an](an>1),當(dāng)x∈Dn時,曲線C上存在點(diǎn)Pn(xn,f(xn)),使得點(diǎn)Pn處的切線與直線A0An平行.
(1)證明:{logt(xn-1)+1}是等比數(shù)列;
(2)當(dāng)Dn+1?Dn對一切n∈N*恒成立時,求t的取值范圍;
(3)記數(shù)列{an}的前n項和為Sn,當(dāng)時,試比較Sn與n+7的大小,并證明你的結(jié)論.
解:(1)∵由線在點(diǎn)P
n的切線與直線AA
n平行,
∴
,即
,
由x
n+1=tf(x
n+1-1)+1,得x
n+1-1=t(x
n-1)
2,
∴l(xiāng)og
t(x
n+1-1)=1+2log
t(x
n-1),
即log
t(x
n+1-1)+1=2[log
t(x
n-1)+1],
∴{log
t(x
n-1)+1}是首項為log
t2+1,公比為2的等比數(shù)列.
(2)由(1)得log
t(x
n-1)+1=(log
t2+1)•2
n-1,
∴
.
從而
,
由D
n+1?D
n對一切n∈N
*恒成立,
得a
n+1<a
n,
即
,
∴0<2t<1,
即
.
(3)當(dāng)
時,
,
∴
,
當(dāng)n≤3時,2
n-1≤n+1;
當(dāng)n≥4時,2
n-1>n+1,
∴當(dāng)n≤3時,
<n+7.
當(dāng)n≥4時,S
n<
=
<n+7.
綜上所述,對任意的n∈N
*,都有S
n<n+7.
分析:(1)由線在點(diǎn)P
n的切線與直線AA
n平行,知
,由x
n+1=tf(x
n+1-1)+1,得x
n+1-1=t(x
n-1)
2,由此能夠證明{log
t(x
n-1)+1}是等比數(shù)列.
(2)由log
t(x
n-1)+1=(log
t2+1)•2
n-1,得
.從而
,由D
n+1?D
n對一切n∈N
*恒成立,得a
n+1<a
n,由此能求出t的取值范圍.
(3)當(dāng)
時,
,所以
,由此能夠比較比較S
n與n+7的大。
點(diǎn)評:本題考查數(shù)列與不等式的綜合運(yùn)用,解題時要認(rèn)真審題,仔細(xì)解答,注意挖掘題設(shè)中的隱含條件,合理地進(jìn)行等價轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
已知曲線C:f(x)=3x
2-1,C上的兩點(diǎn)A,A
n的橫坐標(biāo)分別為2與a
n(n=1,2,3,…),a
1=4,數(shù)列{x
n}滿足
xn+1=[f(xn-1)+1]+1(t>0且t≠,t≠1)、設(shè)區(qū)間D
n=[1,a
n](a
n>1),當(dāng)x∈D
n時,曲線C上存在點(diǎn)p
n(x
n,f(x
n)),使得點(diǎn)p
n處的切線與AA
n平行,
(I)建立x
n與a
n的關(guān)系式;
(II)證明:
{logt(xn-1)+1}是等比數(shù)列;
(III)當(dāng)D
n+1?D
n對一切n∈N
+恒成立時,求t的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知曲線C:f(x)=x
3+1,則與直線
y=-x-4垂直的曲線C的切線方程為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知曲線C:f(x)=x+
(a>0),直線l:y=x,在曲線C上有一個動點(diǎn)P,過點(diǎn)P分別作直線l和y軸的垂線,垂足分別為A,B.再過點(diǎn)P作曲線C的切線,分別與直線l和y軸相交于點(diǎn)M,N,O是坐標(biāo)原點(diǎn).則△OMN與△ABP的面積之比為
8
8
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
(2009•溫州二模)已知曲線C:f(x)=x3-ax+a,
(Ⅰ)若f(x)在區(qū)間[1,2]上是增函數(shù),求實數(shù)a的取值范圍;
(Ⅱ)過C外一點(diǎn)A(1,0)引C的兩條切線,若它們的傾斜角互補(bǔ),求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知曲線C:f(x)=x3.
(1)利用導(dǎo)數(shù)的定義求f(x)的導(dǎo)函數(shù)f′(x);
(2)求曲線C上橫坐標(biāo)為1的點(diǎn)處的切線方程.
查看答案和解析>>