A. | ①③ | B. | ②③ | C. | ①② | D. | ①②③ |
分析 本題考查的知識(shí)點(diǎn)是類(lèi)比推理,在由平面幾何的性質(zhì)類(lèi)比推理空間立體幾何性質(zhì)時(shí),我們常用的思路是:由平面幾何中點(diǎn)的性質(zhì),類(lèi)比推理空間幾何中線的性質(zhì);由平面幾何中線的性質(zhì),類(lèi)比推理空間幾何中面的性質(zhì);由平面幾何中面的性質(zhì),類(lèi)比推理空間幾何中體的性質(zhì);或是將一個(gè)二維平面關(guān)系,類(lèi)比推理為一個(gè)三維的立體關(guān)系,故類(lèi)比平面內(nèi)正三角形的“三邊相等,三內(nèi)角相等”的性質(zhì),我們可以推斷正四面體的相關(guān)性質(zhì).
解答 解:在由平面幾何的性質(zhì)類(lèi)比推理空間立體幾何性質(zhì)時(shí),我們常用的思路是:
由平面幾何中點(diǎn)的性質(zhì),類(lèi)比推理空間幾何中線的性質(zhì);
由平面幾何中線的性質(zhì),類(lèi)比推理空間幾何中面的性質(zhì);
由平面幾何中面的性質(zhì),類(lèi)比推理空間幾何中體的性質(zhì);
或是將一個(gè)二維平面關(guān)系,類(lèi)比推理為一個(gè)三維的立體關(guān)系,
故類(lèi)比平面內(nèi)正三角形的“三邊相等,三內(nèi)角相等”的性質(zhì),推斷:
①各棱長(zhǎng)相等,同一頂點(diǎn)上的任兩條棱的夾角都相等;
②各個(gè)面都是全等的正三角形,相鄰兩個(gè)面所成的二面角都相等;
③各個(gè)面都是全等的正三角形,同一頂點(diǎn)上的任兩條棱的夾角都相等.
都是恰當(dāng)?shù)?br />故選D.
點(diǎn)評(píng) 類(lèi)比推理的一般步驟是:(1)找出兩類(lèi)事物之間的相似性或一致性;(2)用一類(lèi)事物的性質(zhì)去推測(cè)另一類(lèi)事物的性質(zhì),得出一個(gè)明確的命題(猜想).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\sqrt{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | |a|>1 | B. | |a|<2 | C. | |a|>3 | D. | 1<|a|<$\sqrt{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com