雙曲線
x2
4
-
y2
b2
=1(b>0)的一條漸近線方程為3x-2y=0,則b=(  )
A、2B、4C、3D、9
考點(diǎn):雙曲線的簡單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:求出雙曲線
x2
4
-
y2
b2
=1的漸近線方程為y=±
b
2
x,結(jié)合已知漸近線方程,即可得到b.
解答: 解:雙曲線
x2
4
-
y2
b2
=1的漸近線方程為
y=±
b
2
x,
由于一條漸近線方程為3x-2y=0,
3
2
=
b
2
,即b=3.
故選C.
點(diǎn)評(píng):本題考查雙曲線的方程和性質(zhì),考查漸近線方程,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知 PH⊥Rt△HEF所在的平面,且HE⊥EF,連接PE,PF,則圖中直角三角形的個(gè)數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合x滿足{1,2}⊆x⊆{1,2,3,4,5},求:所有滿足x的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知非空集合S同時(shí)滿足下列兩個(gè)條件:
①S⊆{1,2,3,4,5}
②若a∈S,則6-a∈S
試寫出滿足條件的所有集合S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的左焦點(diǎn)為F1(-1,0),且點(diǎn)P(0,1)在C1上.
(1)求橢圓C1的方程;
(2)設(shè)直線l過點(diǎn)(0,
2
)且與橢圓C1相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x),其周期為4,且當(dāng)x∈[-1,3]時(shí),f(x)=
1-x2
     x∈[-1,1]
1-|x-2|   x∈(1,3]
,若函數(shù)g(x)=f(x)-kx-k恰有4個(gè)零點(diǎn),則實(shí)數(shù)k的取值范是( 。
A、(-
2
4
,-
1
5
B、(
6
12
,
1
3
C、(-
2
4
,-
1
5
)∪(
6
12
,
1
3
D、(
1
5
1
3
)∪(-
1
3
,-
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從2012年開始,歐盟規(guī)定對汽車CO2的排放量超過130g/km(排放量超標(biāo))的新車進(jìn)行懲罰,某檢測部門對甲、乙兩種型號(hào)的新車分別隨機(jī)抽取了5輛進(jìn)行CO2排放量檢測,結(jié)果記錄如下(單位:g/km):
80110120140150
100120xy160
(Ⅰ)從被檢測的5輛甲類型的新車中隨機(jī)抽取3輛進(jìn)行跟蹤調(diào)查,記抽取的3輛新車中CO2排放超標(biāo)的臺(tái)數(shù)為隨機(jī)變量X,求X的分布則和數(shù)學(xué)期望EX;
(Ⅱ)經(jīng)測算發(fā)現(xiàn),甲、乙兩種型號(hào)的新車CO2的排入量的平均值相同,但乙類型新車比甲類型新車的CO2的排放量的穩(wěn)定性要好,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三視圖,邊長為1的正方形網(wǎng)格,求體積         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若a4=18-a5,則S8=( 。
A、18B、36C、54D、72

查看答案和解析>>

同步練習(xí)冊答案