12.已知圓錐的表面積為am2,且它的側(cè)面展開圖是一個(gè)半圓,則這個(gè)圓錐的底面半徑為$\sqrt{\frac{a}{3π}}$ m.

分析 根據(jù)側(cè)面展開圖得出底面半徑r和母線l的關(guān)系,根據(jù)表面積公式列方程解出底面半徑.

解答 解:設(shè)圓錐的底面半徑為r,母線為l,則2πr=πl(wèi),即l=2r,
∴S表面積=πr2+πrl=3πr2=a,
∴a=$\sqrt{\frac{a}{3π}}$.
故答案為:$\sqrt{\frac{a}{3π}}$.

點(diǎn)評(píng) 本題考查了圓錐的結(jié)構(gòu)特征,面積表計(jì)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-4y≤-3}\\{3x+5y≤25}\\{x≥1}\end{array}\right.$,記z=ax-y(其中a>0)的最小值為f(a),若f(a)≥-$\frac{2}{5}$,則實(shí)數(shù)a的最小值為(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且$\frac{a}cosC=({3-\frac{c}{a}})cosB$.
(1)求sinB的值;
(2)若D為AC的中點(diǎn),且BD=1,求△ABD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知在梯形ABCD中,∠ADC=$\frac{π}{2}$,AB∥CD,PC⊥平面ABCD,CP=AB=2DC=2DA,點(diǎn)E在BP上,且EB=2PE.
(1)求證:DP∥平面ACE;
(2)求二面角E-AC-P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),公比是q,且滿足:a1=3,b1=1,b2+S2=12,S2=b2q.
(Ⅰ)求an與bn
(Ⅱ)設(shè)cn=3bn-2λ•$\frac{{a}_{n}}{3}$(λ∈R),若數(shù)列{cn}是遞增數(shù)列,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.有甲、乙、丙、丁、戊5位同學(xué),求:
(1)5位同學(xué)站成一排,甲、戊不在兩端有多少種不同的排法?
(2)5位同學(xué)站成一排,要求甲乙必須相鄰,丙丁不能相鄰,有多少種不同的排法?
(3)將5位同學(xué)分配到三個(gè)班,每班至少一人,共有多少種不同的分配方法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.現(xiàn)有如表樣本數(shù)據(jù):
x2324252627
y20.923.125.126.929
經(jīng)計(jì)算可知y對(duì)x呈線性相關(guān)關(guān)系:
試求:(1)線性回歸方程y=bx+a;
            (2)估計(jì)x為何值時(shí),y=100.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=x2-4ln(x+1)的單調(diào)遞減區(qū)間是( 。
A.(-∞,-2)B.(-1,1)C.(-2,1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a1=4,a2+a4+a6=30,則S6=(  )
A.54B.44C.34D.24

查看答案和解析>>

同步練習(xí)冊(cè)答案