動(dòng)點(diǎn)A在圓x2+y2-7x+4y+16=0上,點(diǎn)B(6,-4),求線段AB的中點(diǎn)O的軌跡.
考點(diǎn):軌跡方程
專題:計(jì)算題,直線與圓
分析:設(shè)出A和O的坐標(biāo),利用O是AB的中點(diǎn)把A的坐標(biāo)用O的坐標(biāo)表示,代入圓的方程得答案.
解答: 解:設(shè)O(x,y),A(x1,y1),
由B點(diǎn)的坐標(biāo)為(6,-4),O為AB的中點(diǎn),得x1=2x-6,y1=2y+4.
∵動(dòng)點(diǎn)A在圓x2+y2-7x+4y+16=0上,
∴代入整理得:(x-
19
4
2+(y+3)2=
1
16

∴線段AB的中點(diǎn)O的軌跡是以(
19
4
,-3)為圓心,
1
4
為半徑的圓.
點(diǎn)評(píng):本題考查了與直線、圓有關(guān)的動(dòng)點(diǎn)的軌跡方程,考查了代入法,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在正項(xiàng)等比數(shù)列{an}中,lga3+lga6+lga9=6,則a5•a7的值是( 。
A、10000B、1000
C、100D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
a
3
x3-
3
2
x2
+(a+1)x+1,其中a為實(shí)數(shù).
(1)已知函數(shù)f(x)在x=1處取得極值,求a的值;
(2)已知不等式f′(x)>x2-x-a+1對(duì)任意a∈(0,+∞)都成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將一顆質(zhì)地均勻的骰子連續(xù)拋擲三次,依次得到的三個(gè)點(diǎn)數(shù)成等差數(shù)列的概率為( 。
A、
1
12
B、
1
6
C、
1
4
D、
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等比數(shù)列{an}中,a4=8,a7=27,則公比q=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線kx+y+2=0和以M(-2,1),N(3,2)為端點(diǎn)的線段相交,則實(shí)數(shù)k的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
OA
=(cosα,sinα),
OB
=(-sin(α+
π
6
),cos(α+
π
6
)),其中O為滿足|λ
OA
-
OB
|
3
|
OB
|
,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

判斷三角函數(shù)的奇偶性.
(1)f(x)=sin(
3x
4
+
2
);
(2)f(x)=lg
sinx+cosx
sinx-cosx
;
(3)f(x)=
1+sinx-cosx
1+sinx+cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

上海自貿(mào)區(qū)某進(jìn)口產(chǎn)品的關(guān)稅率為t,其市場(chǎng)價(jià)格x(單位:千元)與市場(chǎng)供應(yīng)量p(單位:萬(wàn)件)之間近似滿足關(guān)系式:P=2 (1-t)(x-5)2
(1)若市場(chǎng)價(jià)格為7千元,則市場(chǎng)供應(yīng)量約為2萬(wàn)件,試確定t的值;
(2)經(jīng)調(diào)查,市場(chǎng)需求量q(單位:萬(wàn)件)與市場(chǎng)價(jià)格x近似滿足關(guān)系式:q=21-x,當(dāng)t=
3
2
時(shí),為保證市場(chǎng)供應(yīng)量不低于市場(chǎng)需求量,試求市場(chǎng)價(jià)格x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案