【題目】如圖所示,直三棱柱中, , , ,點(diǎn), 分別是的中點(diǎn).
(Ⅰ)求證: 平面;
(Ⅱ)若二面角的大小為,求直線與平面所成角的正弦值.
【答案】(Ⅰ)證明見解析;(Ⅱ) .
【解析】試題分析:
(Ⅰ)連接, ,由中位線的性質(zhì)可得: ,利用線面平行的判斷定理即可證得平面.
(Ⅱ)結(jié)合直三棱柱的性質(zhì),分別以, , 所在直線為軸, 軸, 軸建立如圖所示的空間直角坐標(biāo)系.設(shè),則, , ,據(jù)此可得平面的一個法向量為,平面的一個法向量為,則,求解方程可得,利用線面角的向量求法可得.
試題解析:
(Ⅰ)連接, ,則且為的中點(diǎn),
又 為的中點(diǎn), ,
又平面, 平面,故平面.
(Ⅱ)因?yàn)?/span>是直三棱柱,所以平面,得.因?yàn)?/span>, ,
,故.以為原點(diǎn),分別以, , 所在直線為軸, 軸, 軸建立如圖所示的空間直角坐標(biāo)系.
設(shè),則, , ,
, , .
取平面的一個法向量為,
由得:令,得,
同理可得平面的一個法向量為,
二面角的大小為, ,
解得,得,又,
設(shè)直線與平面所成角為,則 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)當(dāng)時,求不等式的解集;
(2)若不等式的解集為空集,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,直線的斜率之積為 .
(Ⅰ)求頂點(diǎn)的軌跡方程;
(Ⅱ)設(shè)動直線 ,點(diǎn)關(guān)于直線的對稱點(diǎn)為,且點(diǎn)在曲線上,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān), 現(xiàn)收集了該種藥用昆蟲的6組觀測數(shù)據(jù)如下表:
溫度x/C | 21 | 23 | 24 | 27 | 29 | 32 |
產(chǎn)卵數(shù)y/個 | 6 | 11 | 20 | 27 | 57 | 77 |
經(jīng)計算得: , , , ,
,線性回歸模型的殘差平方和,e8.0605≈3167,其中xi, yi分別為觀測數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1, 2, 3, 4, 5, 6.
(Ⅰ)若用線性回歸模型,求y關(guān)于x的回歸方程=x+(精確到0.1);
(Ⅱ)若用非線性回歸模型求得y關(guān)于x的回歸方程為=0.06e0.2303x,且相關(guān)指數(shù)R2=0.9522.
( i )試與(Ⅰ)中的回歸模型相比,用R2說明哪種模型的擬合效果更好.
( ii )用擬合效果好的模型預(yù)測溫度為35C時該種藥用昆蟲的產(chǎn)卵數(shù)(結(jié)果取整數(shù)).
附:一組數(shù)據(jù)(x1,y1), (x2,y2), ...,(xn,yn ), 其回歸直線=x+的斜率和截距的最小二乘估計為
=;相關(guān)指數(shù)R2=.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某城市街道上一側(cè)路邊邊緣某處安裝路燈,路寬為米,燈桿長4米,且與燈柱成角,路燈采用可旋轉(zhuǎn)燈口方向的錐形燈罩,燈罩軸線與燈的邊緣光線(如圖, )都成角,當(dāng)燈罩軸線與燈桿垂直時,燈罩軸線正好通過的中點(diǎn).
(I)求燈柱的高為多少米;
(II)設(shè),且,求燈所照射路面寬度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《算法統(tǒng)宗》是中國古代數(shù)學(xué)名著,由明代數(shù)學(xué)家程大位所著,該著作完善了珠算口訣,確立了算盤用法,完成了由籌算到珠算的徹底轉(zhuǎn)變,對我國民間普及珠算和數(shù)學(xué)知識起到了很大的作用,如圖所示的程序框圖的算法思路源于該著作中的“李白沽酒”問題,執(zhí)行該程序框圖,若輸出的的值為0,則輸入的的值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018貴州遵義市高三上學(xué)期第二次聯(lián)考】設(shè)拋物線的準(zhǔn)線與軸交于,拋物線的焦點(diǎn)為,以為焦點(diǎn),離心率的橢圓與拋物線的一個交點(diǎn)為;自引直線交拋物線于兩個不同的點(diǎn),設(shè).
(Ⅰ)求拋物線的方程和橢圓的方程;
(Ⅱ)若,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com