橢圓C:
x2
4
+
y2
3
=1
的左、右頂點分別為A1、A2,點P在C上且直線PA2斜率的取值范圍是[-2,-1],那么直線PA1斜率的取值范圍是( 。
分析:由橢圓C:
x2
4
+
y2
3
=1
可知其左頂點A1(-2,0),右頂點A2(2,0).設P(x0,y0)(x0≠±2),代入橢圓方程可得
y
2
0
x
2
0
-4
=-
3
4
.利用斜率計算公式可得kPA1kPA2,再利用已知給出的kPA1的范圍即可解出.
解答:解:由橢圓C:
x2
4
+
y2
3
=1
可知其左頂點A1(-2,0),右頂點A2(2,0).
設P(x0,y0)(x0≠±2),則
x
2
0
4
+
y
2
0
3
=1
,得
y
2
0
x
2
0
-4
=-
3
4

kPA2=
y0
x0-2
,kPA1=
y0
x0+2

kPA1kPA2=
y
2
0
x
2
0
-4
=-
3
4
,
-2≤kPA2≤-1,
-2≤-
3
4kPA1
≤-1
,解得
3
8
kPA1
3
4

故選B.
點評:熟練掌握橢圓的標準方程及其性質(zhì)、斜率的計算公式、不等式的性質(zhì)等是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,如圖,已知橢圓C:
x24
+y2
=1的上、下頂點分別為A、B,點P在橢圓C上且異于點A、B,直線AP、BP與直線l:y=-2分別交于點M、N;
(I)設直線AP、BP的斜率分別為k1,k2求證:k1•k2為定值;
(Ⅱ)求線段MN長的最小值;
(Ⅲ)當點P運動時,以MN為直徑的圓是否經(jīng)過某定點?請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x24
+y2=1
,直線l與橢圓C相交于A、B兩點,若以AB為直徑的圓經(jīng)過坐標原點.
(1)試探究:點O到直線AB的距離是否為定值,若是,求出該定值;若不是,請說明理由;
(2)求△AOB面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
4
+y2=1
,左右焦點分別為F1,F(xiàn)2,
(1)若C上一點P滿足∠F1PF2=90°,求△F1PF2的面積;
(2)直線l交C于點A,B,線段AB的中點為(1,
1
2
)
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•沈陽二模)橢圓C:
x2
4
+y2=1
與動直線l:2mx-2y-2m+1=0(m∈R),則直線l與橢圓C交點的個數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•普陀區(qū)二模)已知點E,F(xiàn)的坐標分別是(-2,0)、(2,0),直線EP,F(xiàn)P相交于點P,且它們的斜率之積為-
1
4

(1)求證:點P的軌跡在橢圓C:
x2
4
+y2=1
上;
(2)設過原點O的直線AB交(1)題中的橢圓C于點A、B,定點M的坐標為(1,
1
2
)
,試求△MAB面積的最大值,并求此時直線AB的斜率kAB;
(3)某同學由(2)題結(jié)論為特例作推廣,得到如下猜想:
設點M(a,b)(ab≠0)為橢圓C:
x2
4
+y2=1
內(nèi)一點,過橢圓C中心的直線AB與橢圓分別交于A、B兩點.則當且僅當kOM=-kAB時,△MAB的面積取得最大值.
問:此猜想是否正確?若正確,試證明之;若不正確,請說明理由.

查看答案和解析>>

同步練習冊答案