如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左頂點為A,左焦點為F,上頂點為B,若∠BAO+∠BFO=90°,則該橢圓的離心率是______.
設(shè)橢圓的右焦點為F′,
由題意得 A(-a,0)、B(0,b),F(xiàn)′(c,0),
∵∠BAO+∠BFO=90°,且∠BFO=∠BF′O,
∴∠BAO+∠BF′O=90°,
AB
BF′
=0,
∴(a,b)•(c,-b)=ac-b2=ac-a2+c2=0,
∴e-1+e2=0,
解得 e=
5
-1
2

故答案為:
5
-1
2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓過點(3,0)且離心率為
6
3
,則橢圓標(biāo)準(zhǔn)方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過橢圓
x2
16
+
y2
9
=1
的一個焦點F1的直線與橢圓交于A,B兩點,則A,B與橢圓的另一個焦點F2構(gòu)成△ABF2,則△ABF2的周長是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若橢圓的焦距長等于它的短軸長,則橢圓的離心率等于______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的一個頂點到其左、右兩個焦點F1,F(xiàn)2的距離分別為5和1;點P是橢圓上一點,且在x軸上方,直線PF2的斜率為-
15

(Ⅰ)求橢圓E的方程;
(Ⅱ)求△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左右焦點分別為F1,F(xiàn)2,P是橢圓上的一點,且|PF1|,|F1F2|,|PF2|成等比數(shù)列,則橢圓的離心率的取值范圍為( 。
A.[
1
2
,
2
2
]
B.[
5
-1,
1
2
]
C.[
2
-1,
1
2
]
D.[
5
5
,
1
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若方程
x2
a
-
y2
b
=1表示焦點在y軸上的橢圓,則下列關(guān)系成立的是( 。
A.
-b
a
B.
-b
a
C.
b
-a
D.
b
-a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

巳知F1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的兩焦點,以線段F1F2為邊作正三角形PF1F2,若邊PF1的中點在橢圓上,則該橢圓的離心率是( 。
A.
3
-1
B.
3
+1
C.
1
2
D.
3
-1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓焦點在x軸上,A為該橢圓右頂點,P在橢圓上一點,∠OPA=90°,則該橢圓的離心率e的范圍是( 。
A.[
1
2
,1)
B.(
2
2
,1)
C.[
1
2
,
6
3
D.(0,
2
2

查看答案和解析>>

同步練習(xí)冊答案