6.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{-x-2(x≤-1)}\\{-1(-1<x<1)}\\{x-2(x≥1)}\end{array}\right.$
(1)畫出函數(shù)f(x)的圖象并求f(2)+f(0)+f(-2)的值;
(2)若f(x)=3,求x的值;
(3)若f(x)≥2,求x的取值范圍.

分析 (1)分段作出函數(shù)的圖象,即可得到f(x)的圖象;然后求解函數(shù)值即可.
(2)由圖象,f(x)=3,列出方程,可求x的值;
(3)利用函數(shù)的圖象,通過f(x)≥2,即可列出不等式求解即可.

解答 解:(1)函數(shù)f(x)=$\left\{\begin{array}{l}{-x-2(x≤-1)}\\{-1(-1<x<1)}\\{x-2(x≥1)}\end{array}\right.$
函數(shù)圖象如圖所示:
f(2)+f(0)+f(-2)=0-1+0=-1.
(2)由圖象,f(x)=3,則:-x-2=3,解得x=-5.
x-2=3,解得x=5.
(3)由圖象,f(x)≥2,可知:-x-2≥2,解得x≤-4;
x-2≥2解得x≥4,不等式的解集為:{x|x≤-4或x≥4}.

點評 本題考查函數(shù)的圖象,考查數(shù)形結(jié)合的數(shù)學思想,正確作出分段函數(shù)的圖象是關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

17.設(shè)函數(shù)f(x)=x($\frac{1}{2}$)x+$\frac{1}{x+2}$,O為坐標原點,An為函數(shù)y=f(x)圖象上橫坐標為n(n∈N*)的點,向量$\overrightarrow{O{A_n}}$與向量$\overrightarrow i$=(1,0)的夾角為αn,則滿足tanα1+tanα2+…+tanαn<$\frac{5}{4}$的最大整數(shù)n的值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設(shè)函數(shù)f(x)=$\frac{x}{{e}^{x}}$-ax+a,若存在唯一的整數(shù)x0,使得f(x0)>1,則a的取值范圍是( 。
A.(1,2]B.(1,$\frac{e+1}{2}$]C.(1,$\frac{2e}{3}$]D.(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設(shè)a=${∫}_{0}^{2}$(1-2x)dx,則二項式($\frac{1}{2}$x2+$\frac{a}{x}$)6的常數(shù)項是( 。
A.240B.-240C.-60D.60

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.設(shè)Sn為等差數(shù)列{an}的前n項和,其中a1=1,且$\frac{{S}_{n}}{{a}_{n}}$=λan+1(n∈N*).記bn=$\frac{{a}_{n}}{{3}^{n}}$,數(shù)列{bn}的前n項和為Tn,若對任意的n≥k(k∈N*),都有|Tn-$\frac{3}{4}$|<$\frac{1}{4n}$,則常數(shù)k的最小值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知α為鈍角,sinα=$\frac{2\sqrt{5}}{5}$,則tan($\frac{π}{4}$+α)=(  )
A.3B.$\frac{1}{3}$C.-3D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知a,b為非零實數(shù),z=a+bi,“z2為純虛數(shù)”是“a=b”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,三棱柱ABC-A1B1C1中,D為AA1的中點,E為BC的中點.
(1)求證:直線AE∥平面BDC1;
(2)若三棱柱 ABC-A1B1C1是正三棱柱,AB=2,AA1=4,求平面BDC1與平面ABC所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.過圓O外一點P,作圓的切線PA、PB,A、B為切點,M為弦AB上一點,過M作直線分別交PA、PB于點C、D.
(Ⅰ)若BD=2,AC=3,MC=4,求線段MD的長;
(Ⅱ)若MO⊥CD,求證:MD=MC.

查看答案和解析>>

同步練習冊答案