【題目】已知.
(1)解關(guān)于的不等式;
(2)若不等式的解集為,求實(shí)數(shù)的值.
【答案】(1);(2).
【解析】試題分析:(1)由f(1)=-3+a(6-a)+6=-a2+6a+3,得a2-6a-3<0,求解即可;
(2)f(x)>b的解集為(-1,3)等價(jià)于方程-3x2+a(6-a)x+6-b=0的兩根為-1,3,由根與系數(shù)的關(guān)系求解即可.
試題解析:
(1)∵f(x)=-3x2+a(6-a)x+6,
∴f(1)=-3+a(6-a)+6=-a2+6a+3,
∴原不等式可化為a2-6a-3<0,解得3-2<a<3+2.
∴原不等式的解集為{a|3-2<a<3+2}
(2)f(x)>b的解集為(-1,3)等價(jià)于方程-3x2+a(6-a)x+6-b=0的兩根為-1,3,
等價(jià)于解得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由于疫情影響,今年我們學(xué)校開展線上教學(xué),高一年級(jí)某班班主任為了了解學(xué)生上網(wǎng)學(xué)習(xí)時(shí)間,對(duì)本班40名學(xué)生某天上網(wǎng)學(xué)習(xí)時(shí)間進(jìn)行了調(diào)查,將數(shù)據(jù)(取整數(shù))整理后,繪制出如圖所示頻率分布直方圖,已知從左到右各個(gè)小組的頻率分別是0.15,0.25,0.35,0.20,0.05,則根據(jù)直方圖所提供的信息.
(1)這一天上網(wǎng)學(xué)習(xí)時(shí)間在分鐘之間的學(xué)生有多少人?
(2)這40位同學(xué)的線上平均學(xué)習(xí)時(shí)間是多少?
(3)如果只用這40名學(xué)生這一天上網(wǎng)學(xué)習(xí)時(shí)間作為樣本去推斷該校高一年級(jí)全體學(xué)生該天的上網(wǎng)學(xué)習(xí)時(shí)間,這樣推斷是否合理?為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)2017年招聘員工,其中A、B、C、D、E五種崗位的應(yīng)聘人數(shù)、錄用人數(shù)和錄用比例(精確到1%)如下:
(Ⅰ)從表中所有應(yīng)聘人員中隨機(jī)選擇1人,試估計(jì)此人被錄用的概率;
(Ⅱ)從應(yīng)聘E崗位的6人中隨機(jī)選擇1名男性和1名女性,求這2人均被錄用的概率;
(Ⅲ)表中A、B、C、D、E各崗位的男性、女性錄用比例都接近(二者之差的絕對(duì)值不大于5%),但男性的總錄用比例卻明顯高于女性的總錄用比例.研究發(fā)現(xiàn),若只考慮其中某四種崗位,則男性、女性的總錄用比例也接近,請(qǐng)寫出這四種崗位.(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大型活動(dòng)即將舉行,為了做好接待工作,組委會(huì)招募了名男志愿者和名女志愿者,調(diào)查發(fā)現(xiàn),男、女志愿者中分別有人和人喜愛運(yùn)動(dòng),其余人不喜愛運(yùn)動(dòng).
(1)根據(jù)以上數(shù)據(jù)完成以下列聯(lián)表:
喜愛運(yùn)動(dòng) | 不喜愛運(yùn)動(dòng) | 總計(jì) | |
男志愿者 | |||
女志愿者 | |||
總計(jì) |
(2)根據(jù)列聯(lián)表判斷能否有℅的把握認(rèn)為性別與喜愛運(yùn)動(dòng)有關(guān)?
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式: ,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的一系列對(duì)應(yīng)值如下表:
(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)的一個(gè)解析式;
(2)根據(jù)(1)的結(jié)果,若函數(shù)周期為,當(dāng)時(shí),方程 恰有兩個(gè)不同的解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果雙曲線的離心率e=,則稱此雙曲線為黃金雙曲線.有以下幾個(gè)命題:①雙曲線是黃金雙曲線;②雙曲線是黃金雙曲線;③在雙曲線 (a>0,b>0)中,F1為左焦點(diǎn),A2為右頂點(diǎn),B1(0,b),若∠F1B1A2=90°,則該雙曲線是黃金雙曲線;④在雙曲線 (a>0,b>0)中,過右焦點(diǎn)F2作實(shí)軸的垂線交雙曲線于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn),若∠MON=120°,則該雙曲線是黃金雙曲線.其中正確命題的序號(hào)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)是拋物線的焦點(diǎn),是拋物線在第一象限內(nèi)的點(diǎn),且,
(I) 求點(diǎn)的坐標(biāo);
(II)以為圓心的動(dòng)圓與軸分別交于兩點(diǎn),延長(zhǎng)分別交拋物線于兩點(diǎn);
①求直線的斜率;
②延長(zhǎng)交軸于點(diǎn),若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)b和c分別是先后拋擲一顆骰子得到的點(diǎn)數(shù),則方程x2﹣bx+c=0有實(shí)根的概率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的長(zhǎng)軸與短軸之和為6,橢圓上任一點(diǎn)到兩焦點(diǎn), 的距離之和為4.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線: 與橢圓交于, 兩點(diǎn), , 在橢圓上,且, 兩點(diǎn)關(guān)于直線對(duì)稱,問:是否存在實(shí)數(shù),使,若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com