14.已知$\frac{sinα+cosα}{sinα-cosα}$=2,則sin2α-sinαcosα的值為$\frac{3}{5}$.

分析 將分子分母同除以cosα,利用同角三角函數(shù)基本關系式可求tanα=3,利用同角三角函數(shù)基本關系式化簡所求即可計算得解.

解答 解:∵$\frac{sinα+cosα}{sinα-cosα}$=$\frac{tanα+1}{tanα-1}$=2,解得:tanα=3,
∴sin2α-sinαcosα=$\frac{si{n}^{2}α-sinαcosα}{si{n}^{2}α+co{s}^{2}α}$=$\frac{ta{n}^{2}α-tanα}{ta{n}^{2}α+1}$=$\frac{{3}^{2}-3}{{3}^{2}+1}$=$\frac{3}{5}$.
故答案為:$\frac{3}{5}$.

點評 本題主要考查了同角三角函數(shù)基本關系式在三角函數(shù)化簡求值中的應用,考查了轉(zhuǎn)化思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知f(x)=x2-6x+5.
(Ⅰ)求$f(-\sqrt{2}),f(a)+f(3)$的值;
(Ⅱ)若x∈[2,6],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.圓C1:x2+(y-1)2=1和圓C2:x2-6x+y2-8y=0的位置關系為( 。
A.相交B.內(nèi)切C.外切D.內(nèi)含

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知直線m,n和平面α,如果n?α,那么“m⊥n”是“m⊥α”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知方程3x+x=5的根在區(qū)間[k,k+1)(k∈Z),則k的值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.如圖,四邊形ABCD是一個5×4的方格紙,向此四邊形內(nèi)拋撒一粒小豆子,則小豆子恰好落在陰影部分內(nèi)的概率為$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)$f(x)=\sqrt{-3{x^2}+ax}-\frac{a}{x}$(a>0).若存在x0,使得f(x0)≥0成立,則a的最小值為12$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{{e}^{x}-1}{{e}^{x}+1}$(e為自然對數(shù)的底數(shù),e=2.71828…).
(1)證明:函數(shù)f(x)為奇函數(shù);
(2)判斷并證明函數(shù)f(x)的單調(diào)性,再根據(jù)結(jié)論確定f(m2-m+1)+f(-$\frac{3}{4}$)與0的大小關系;
(3)是否存在實數(shù)k,使得函數(shù)f(x)在定義域[a,b]上的值域為[kea,keb].若存在,求出實數(shù)k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)$f(x)=sin(2x-\frac{π}{3})$.
(Ⅰ)當x∈R時,求f(x)的單調(diào)增區(qū)間;
(Ⅱ)當$x∈[0,\frac{π}{2}]$時,求f(x)的值域.

查看答案和解析>>

同步練習冊答案